赞
踩
我们将讨论应用于面部的深度学习的有趣应用。我们将估计年龄并从单个图像中找出该人的性别。该模型由Gil Levi和Tal Hassner训练。我们将简要讨论论文的主要思想,并提供有关如何在OpenCV中使用该模型的分步说明。
1.使用CNN的性别和年龄分类
作者使用了一种非常简单的卷积神经网络架构,类似于CaffeNet和AlexNet。该网络使用3个卷积层,2个完全连接的层和最终的输出层。层的细节如下。
Conv1:第一个卷积层有96个内核大小为7的节点。
Conv2:第二个conv层有256个节点,内核大小为5。
Conv3:第三个转换层有384个节点,内核大小为3。
两个完全连接的层各有512个节点。
他们使用Adience数据集来训练模型。
1.1 性别预测
他们将性别预测定为分类问题。性别预测网络中的输出层是softmax类型,其中2个节点指示两个类“男性”和“女性”。
1.2 年龄预测
理想情况下,年龄预测应该作为回归问题来处理,因为我们期望将实数作为输出。但是,使用回归准确估计年龄具有挑战性。甚至人类也无法根据一个人的情况准确预测年龄。但是,我们知道他们是20岁还是30多岁。由于这个原因,将这个问题构建为一个分类问题是明智的,我们试图估计这个人所处的年龄组。例如,0-2范围内的年龄是单个类别,4-6是另一个类别上课等。
Adience数据集有8个类别,分为以下年龄组[(0 - 2),(4 - 6),(8 - 12),(15 - 20),(25 - 32),(38 - 43),( 48 - 53),(60 - 100)]。因此,年龄预测网络在最终softmax层中具有8个节点,指示所述年龄范围。
应该记住,单个图像的年龄预测不是一个很容易解决的问题,因为感知年龄取决于很多因素,同一年龄的人在世界各地可能看起来很不一样。此外,人们非常努力地隐藏自己的真实年龄!
例如,你能猜出这两位人士的年龄吗?
我可以打赌,当我揭示他们的真实年龄时,你会谷歌!
Narendra Modi是68岁,Ajit Doval是74岁!想象一下机器正确预测其年龄有多难。
2.代码教程
代码可以分为四个部分:
检测面孔
检测性别
检测年龄
显示输出
注意:请下载未随代码一起提供的模型权重文件(性别,年龄)。下载文件并将其与本文提供的其他代码文件一起保存。
您可以使用提供的示例图像或使用网络摄像头运行代码。
C ++用法
#Using sample image
./AgeGender sample1.jpg
Python用法
#Using sample image
python AgeGender.py --input sample1.jpg
2.1 检测脸部
我们将使用DNN人脸检测器进行人脸检测。该型号仅为2.7MB,即使在CPU上也非常快。关于脸部检测装置的更多细节可以在我们的博客上找到的人脸检测。使用函数getFaceBox完成面部检测,如下所示。
tuple<Mat, vector<vector<int>>> getFaceBox(Net net, Mat &frame, double conf_threshold)
{
Mat frameOpenCVDNN = frame.clone();
int frameHeight = frameOpenCVDNN.rows;
int frameWidth = frameOpenCVDNN.cols;
double inScaleFactor = 1.0;
Size size = Size(300, 300);
// std::vector<int> meanVal = {104, 117, 123};
Scalar meanVal = Scalar(104, 117, 123);
cv::Mat inputBlob;
cv::dnn::blobFromImage(frameOpenCVDNN, inputBlob, inScaleFactor, size, meanVal, true, false);
net.setInput(inputBlob, "data");
cv::Mat detection = net.forward("detection_out");
cv::Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
vector<vector<int>> bboxes;
for(int i = 0; i < detectionMat.rows; i++)
{
float confidence = detectionMat.at<float>(i, 2);
if(confidence > conf_threshold)
{
int x1 = static_cast<int>(detectionMat.at<float>(i, 3) * frameWidth);
int y1 = static_cast<int>(detectionMat.at<float>(i, 4) * frameHeight);
int x2 = static_cast<int>(detectionMat.at<float>(i, 5) * frameWidth);
int y2 = static_cast<int>(detectionMat.at<float>(i, 6) * frameHeight);
vector<int> box = {x1, y1, x2, y2};
bboxes.push_back(box);
cv::rectangle(frameOpenCVDNN, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(0, 255, 0),2, 4);
}
}
return make_tuple(frameOpenCVDNN, bboxes);
python
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
return frameOpencvDnn, bboxes
2.2 预测性别
我们将性别网络加载到内存中,并通过网络传递检测到的面部。前向传递给出了两个类的概率或置信度。我们取两个输出的最大值并将其用作最终的性别预测。
string genderProto = "gender_deploy.prototxt";
string genderModel = "gender_net.caffemodel";
Net genderNet = readNet(genderModel, genderProto);
vector<string> genderList = {"Male", "Female"};
blob = blobFromImage(face, 1, Size(227, 227), MODEL_MEAN_VALUES, false);
genderNet.setInput(blob);
// string gender_preds;
vector<float> genderPreds = genderNet.forward();
// printing gender here
// find max element index
// distance function does the argmax() work in C++
int max_index_gender = std::distance(genderPreds.begin(), max_element(genderPreds.begin(), genderPreds.end()));
string gender = genderList[max_index_gender];
python
genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderList = ['Male', 'Female']
blob = cv.dnn.blobFromImage(face, 1, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
print("Gender Output : {}".format(genderPreds))
print("Gender : {}".format(gender))
2.3 预测年龄
我们加载年龄网络并使用正向传递来获得输出。由于网络架构类似于性别网络,我们可以从所有输出中取出最大值来获得预测年龄组。
C++
string ageProto = "age_deploy.prototxt";
string ageModel = "age_net.caffemodel";
Net ageNet = readNet(ageModel, ageProto);
vector<string> ageList = {"(0-2)", "(4-6)", "(8-12)", "(15-20)", "(25-32)", "(38-43)", "(48-53)", "(60-100)"};
ageNet.setInput(blob);
vector<float> agePreds = ageNet.forward();
int max_indice_age = distance(agePreds.begin(), max_element(agePreds.begin(), agePreds.end()));
string age = ageList[max_indice_age];
python
ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"
ageNet = cv.dnn.readNet(ageModel, ageProto)
ageList = ['(0 - 2)', '(4 - 6)', '(8 - 12)', '(15 - 20)', '(25 - 32)', '(38 - 43)', '(48 - 53)', '(60 - 100)']
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print("Gender Output : {}".format(agePreds))
print("Gender : {}".format(age))
2.4 显示输出
我们将在输入图像上显示网络输出,并使用imshow功能显示它们。
c++
string label = gender + ", " + age; // label
cv::putText(frameFace, label, Point(it->at(0), it->at(1) -20), cv::FONT_HERSHEY_SIMPLEX, 0.9, Scalar(0, 255, 255), 2, cv::LINE_AA);
imshow("Frame", frameFace);
python
label = "{}, {}".format(gender, age)
cv.putText(frameFace, label, (bbox[0], bbox[1]-20), cv.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0, 0), 3, cv.LINE_AA)
cv.imshow("Age Gender Demo", frameFace)
3.结论
我们在上面看到,网络能够将性别和年龄预测到高水平的准确性。接下来,我们想用这个模型做一些有趣的事情。许多演员都在电影中描绘了异性的角色。
我们想要检查一下AI在这些角色中所说的外观,以及他们是否能够欺骗AI。
我们使用了本文中的图像,这些图像显示了他们的实际照片以及他们改变性别的电影中的照片。我们来看一下。
所有人都能够用异性来愚弄人工智能。而且,仅从图像中预测名人时代是非常困难的
最后,让我们看看我们的模型预测我们在帖子开头的两个例子
4.数据
尽管性别预测网络表现良好,但年龄预测网络未达到我们的预期。我们试图在论文中找到答案,并为年龄预测模型找到以下混淆矩阵。
可以从上表中进行以下观察:
预测年龄组0-2,4-6,8-13和25-32具有相对高的准确度。(见对角线元素)
输出严重偏向25-32岁年龄组(参见属于25-32岁年龄组的行)。这意味着网络很容易在15到43岁之间混淆。因此,即使实际年龄在15-20或38-43之间,预测年龄很可能是25- 32。从结果部分也可以看出这一点。
除此之外,我们观察到如果我们在检测到的面部周围使用填充,模型的准确性会提高。这可能是由于以下事实:训练时的输入是标准面部图像,而不是我们在面部检测后得到的紧密裁剪的面部。
我们还在进行预测之前分析了面部对齐的使用,并发现某些示例的预测有所改善,但与此同时,对某些人来说情况变得更糟。如果您主要使用非正面面部,那么使用对齐可能是个好主意。
源码下载地址关注微信公众号:“图像算法”或者微信搜索账号imalg_cn关注公众号
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。