赞
踩
import chardet import numpy as np import cv2 as cv import cv2 from PIL import Image import sys from matplotlib import pyplot as plt img = cv2.imread('D:/1/4.jpg',0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) magnitude_spectrum = 20*np.log(np.abs(fshift)) rows, cols = img.shape crow,ccol = int(rows/2) , int(cols/2) fshift[crow-30:crow+30, ccol-30:ccol+30] = 0 f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift) img_back = np.abs(img_back) plt.subplot(221),plt.imshow(img, cmap = 'gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(222),plt.imshow(magnitude_spectrum, cmap = 'gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.subplot(223),plt.imshow(img_back) #恢复图像 plt.title('Result in JET'), plt.xticks([]), plt.yticks([]) plt.subplot(224),plt.imshow(img_back, cmap = 'gray') plt.title('Image after HPF'), plt.xticks([]), plt.yticks([]) plt.show()
def add_noise(img): rows,cols,dims=img.shape for i in range(5000): x=np.random.randint(0,rows) y=np.random.randint(0,cols) img[x,y,:]=1 #二值化处理,以128位界 def add1_noise(img): rows,cols=img.shape for i in range(rows): for j in range(cols): if (img[i,j]<=128): img[i,j]=0 else: img[i,j]=1 # 高斯噪声 def GaussieNoisy(image,sigma): row,col,ch= image.shape mean = 0 gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss return noisy.astype(np.uint8) #椒盐噪声 def spNoisy(image,s_vs_p = 0.5,amount = 0.004): row,col,ch = image.shape out = np.copy(image) num_salt = np.ceil(amount * image.size * s_vs_p) coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape] out[coords] = 1 num_pepper = np.ceil(amount* image.size * (1. - s_vs_p)) coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape] out[coords] = 0 return out img=np.array(Image.open('D:/1/1.jpg')) plt.figure() plt.subplot(221) plt.title("src_img") plt.imshow(img) plt.axis('off') plt.subplot(222) plt.title("noise_img") add_noise(img) plt.imshow(img) plt.axis('off') # # 图像二值化,像素值大于128的变为1,否则变为0 img2=np.array(Image.open('D:/1/1.jpg').convert('L')) plt.subplot(223) plt.title("noise2_img") add1_noise(img2) plt.imshow(img2) plt.axis('off') plt.subplot(224) plt.title("GaussieNoisy") img3=np.array(Image.open('D:/1/1.jpg')) plt.imshow(GaussieNoisy(img3,25)) plt.axis('off') plt.show()
# 傅里叶变换: # 傅里叶变换将低频信号放在了边缘,高频信号放在了中间,然而一副图像, # 很明显的低频信号多而明显,所以讲低频信号移至中心 img = cv2.imread('D:/1/4.jpg',0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f)#将频谱对称轴从左上角移至中心 # #对于负数可以求角度: # # ph_f=np.angle(f) # # ph_fshift = np.angle(fshift) #取绝对值:将复数变化成实数 #取对数的目的为了将数据变化到较小的范围(比如0-255) s1 = np.log(np.abs(f)) s2 = np.log(np.abs(fshift)) plt.subplot(221),plt.imshow(img,'gray'),plt.title('original') plt.xticks([]), plt.yticks([]) plt.subplot(222),plt.imshow(s2,'gray'),plt.title('center') plt.xticks([]), plt.yticks([]) f1shift = np.fft.ifftshift(fshift)# 逆变换 img_back = np.fft.ifft2(f1shift) img_back = np.abs(img_back)#出来的是复数,无法显示,求绝对值 plt.subplot(223),plt.imshow(img_back,'gray'),plt.title('img back') plt.xticks([]), plt.yticks([]) plt.show()
傅里叶变换实现高通录滤波:
图像在变换加移动中心后,从中间到外面,频率上依次是从低频到高频的,
那么我们如果把中间规定一小部分去掉,是不是相对于把低频信号去掉了呢?
这也就是相当于进行了高通滤波
低通滤波器:把上述模板中的1变成0,0变成1
def lowPassFilter(image, d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x: (x - 1) / 2, s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa, pb): from math import sqrt dis = sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2) return dis dis = cal_distance(center_point, (i, j)) if dis <= d: transfor_matrix[i, j] = 1 else: transfor_matrix[i, j] = 0 return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift * d_matrix))) return new_img def highPassFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) if dis <= d: transfor_matrix[i,j]=0 else: transfor_matrix[i,j]=1 return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img img = cv2.imread('D:/1/5.jpg',0) plt.figure() plt.subplot(221) plt.imshow(img,cmap="gray") plt.axis("off") plt.title('gray') f = np.fft.fft2(img) fshift = np.fft.fftshift(f) s1 = np.log(np.abs(fshift)) plt.subplot(222) plt.imshow(s1,'gray') plt.axis("off") plt.title('Frequency Domain') plt.subplot(223) plt.imshow(lowPassFilter(img,100),cmap="gray") plt.axis("off") plt.title('lowPassFilter') plt.subplot(224) plt.imshow(highPassFilter(img,50),cmap="gray") plt.axis("off") plt.title('highPassFilter') plt.show()
中值滤波
概述: 中值滤波是一种非线性空间滤波器, 它的响应基于图像滤波器包围的图像区域中像素的统计排序,
然后由统计排序结果的值代替中心像素的值.中值滤波器将其像素邻域内的灰度中值代替代替该像素的值. 中值滤波器的使用非常普遍,
这是因为对于一定类型的随机噪声, 它提供了一种优秀的去噪能力,比小尺寸的均值滤波器模糊程度明显要低. 中值滤波器对处理脉冲噪声(也称椒盐噪声)非常有效,
因为该噪声是以黑白点叠加在图像上面的.
均值滤波
概述: 均值滤波器的输出是包含在滤波掩模领域内像素的简单平均值.
均值滤波器最常用的目的就是减噪. 然而, 图像边缘也是由图像灰度尖锐变化带来的特性,
所以均值滤波还是存在不希望的边缘模糊负面效应.
# 图片修复程序1(实现水印去除):修复白色区域 img = cv2.imread("D:/1/2.jpg") hight, width, depth = img.shape[0:3] # 图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0 thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255])) # 创建形状和尺寸的结构元素 kernel = np.ones((3, 3), np.uint8) # 扩张待修复区域 hi_mask = cv2.dilate(thresh, kernel, iterations=1) specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA) cv2.namedWindow("Image", 0) cv2.resizeWindow("Image", int(width / 2), int(hight / 2)) cv2.imshow("Image", img) cv2.namedWindow("newImage", 0) cv2.resizeWindow("newImage", int(width / 2), int(hight / 2)) cv2.imshow("newImage", specular) cv2.waitKey(0) cv2.destroyAllWindows()
def GaussianHighFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) transfor_matrix[i,j] = 1-np.exp(-(dis**2)/(2*(d**2))) return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img def GaussianLowFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) transfor_matrix[i,j] = np.exp(-(dis**2)/(2*(d**2))) return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img img = cv2.imread('D:/1/5.jpg',0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) s1 = np.log(np.abs(fshift)) plt.figure() plt.subplot(221) plt.imshow(img,cmap="gray") plt.axis("off") plt.title('gray') plt.subplot(222) plt.axis("off") plt.imshow(GaussianHighFilter(img,10),cmap="gray") plt.title('GaussianHighFilter') plt.subplot(223) plt.axis("off") plt.imshow(GaussianLowFilter(img,50),cmap="gray") plt.title('GaussianLowFilter') plt.show()
def GaussianOperator(roi): GaussianKernel = np.array([[1,2,1],[2,4,2],[1,2,1]]) result = np.sum(roi*GaussianKernel/16) return result def GaussianSmooth(image): new_image = np.zeros(image.shape) image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT) for i in range(1,image.shape[0]-1): for j in range(1,image.shape[1]-1): new_image[i-1,j-1] =GaussianOperator(image[i-1:i+2,j-1:j+2]) return new_image.astype(np.uint8) img=cv.imread("D:/1/5.jpg",0) new_apple = GaussianSmooth(img) plt.subplot(121) plt.axis("off") plt.title("origin image") plt.imshow(img,cmap="gray") plt.subplot(122) plt.axis("off") plt.title("Gaussian image") plt.imshow(img,cmap="gray") plt.subplot(122) plt.axis("off") plt.show()
img[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行
img[:,i] = 100 # 将第 i 列的所有数值设为 100
img[:100,:50].sum() # 计算前 100 行、前 50 列所有数值的和
img[50:100,50:100] # 50~100 行,50~100 列(不包括第 100 行和第 100 列)
img[i].mean() # 第 i 行所有数值的平均值
img[:,-1] # 最后一列
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。