当前位置:   article > 正文

【实例】随机森林可视化的方法(含Python代码)_随机森林可视化代码

随机森林可视化代码

随机森林是多棵决策树的组合,使用scikit-learn时没有直接的方法显示随机森林,只能拆解成单棵树来显示。使用随机森林的属性clf.estimators_获取随机森林的决策树列表( 注意,estimators后边有一个下划线 ’ _’ )

代码

from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from IPython.display import Image
from sklearn import tree
import pydotplus

# 仍然使用自带的iris数据
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 训练模型,限制树的最大深度4
clf = RandomForestClassifier(max_depth=4)
#拟合模型
clf.fit(X, y)

Estimators = clf.estimators_
for index, model in enumerate(Estimators):
    filename = 'iris_' + str(index) + '.pdf'
    dot_data = tree.export_graphviz(model , out_file=None,
                         feature_names=iris.feature_names,
                         class_names=iris.target_names,
                         filled=True, rounded=True,
                         special_characters=True)
    graph = pydotplus.graph_from_dot_data(dot_data)
    graph.write_pdf(filename)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

我们看一下结果为:


我们生成了100个PDF文件,每个文件为一个决策树
在这里插入图片描述
在这里插入图片描述
。。。。。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/blog/article/detail/97654
推荐阅读
相关标签
  

闽ICP备14008679号