赞
踩
简单来说:
1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习
2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述
具体来说:
1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种 approach,比如 deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法会使用不同的模型,不同的假设,不同的解法。这些模型可以是线性,也可以是非线性的。他们可能是基于统计的,也可能是基于稀疏的....
不过他们的共同点是:都是 data-driven 的模型,都是学习一种更加 abstract 的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。
Machine Learning 的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....
2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。
Deep Learning 也会分各种不
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。