当前位置:   article > 正文

Llama-2 多轮对话prompt构建_llama2 prompt构建

llama2 prompt构建

1. 问题提出

最近,META开源了Llama-2模型,受到了广泛的关注和好评,然而,在官方给的使用说明中,并没有对使用方法进行特别细节的介绍,尤其是对于对话任务,这就给我们在使用时带来了很多困扰。

以ChatGLM为例,在执行多轮对话时,需要将历史信息拼接到输入中,以供模型在生成时计算历史token与当前query之间的交互(self-attn):

  1. # ChatGLM中对话prompt的产生:
  2. prompt = ""
  3. for i, (old_query, response) in enumerate(history_input):
  4. prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
  5. prompt += "[Round {}]\n问:{}\n答:".format(len(history_input), query_input)

所以可以很自然的想到,如果使用Llama-2模型进行对话,应该也有这样一套模板,与训练过程中的对话形式相匹配。

于是经过简单的搜索后,在reddit论坛找到了Llama-2官方所提供的说明:

https://www.reddit.com/r/LocalLLaMA/comments/155po2p/get_llama_2_prompt_format_right/

2. prompt的正确形式

根据官方账号给出的说明,在对话时,用户所提供的prompt应当满足以下形式:

<
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/367656
推荐阅读
相关标签
  

闽ICP备14008679号