赞
踩
大家好!五子棋是我们在学习生活中比较常见的棋类游戏之一。两人对弈,一黑一白,下在棋盘的交叉点上,横竖斜形成五子连珠即可获胜。也许有的同学编程的入门之作就是做一款五子棋,我刚好在项目开发过程中,有涉及到相关玩法的开发。今天我就来做一个系统的、分层次性的概述,跟大家探讨一下五子棋中AI博弈算法。
五子棋玩法的实现没什么难度,无非就是一个用一个状态机控制战斗逻辑,然后就是简单的交互和显示逻辑。值得探讨的部分,还是AI博弈的部分。想要实现一个(简单/一般/困难/地域)不同难度的AI,作为我们本篇主要讨论的重点。
如果想要调整不同水平的难度,可以考虑从前n个空白点位中随机一个。比如可以在分数排序之后,从前1/4个数中随机一个。这样AI的博弈水平就会降到一定程度。只是一个思路,大家也可以有不同的做法。
using System.Collections; using System.Collections.Generic; using UnityEngine; using System; public class RandomAITest : MonoBehaviour { private const int WINNING_SCORE = 1000000; private const int THREE_IN_A_ROW = 100; private const int TWO_IN_A_ROW = 10; private const int ONE_IN_A_ROW = 1; // 获取当前玩家的颜色 int GetCurrentPlayerColor(int[,] board) { int count = 0; for (int i = 0; i < board.GetLength(0); i++) { for (int j = 0; j < board.GetLength(1); j++) { if (board[i, j] != 0) { count++; } } } return count % 2 == 0 ? 1 : 2; } // 使用α-β剪枝算法进行决策 Tuple<int, int> AlphaBetaSearch(int[,] board, int depth) { Tuple<int, int> bestMove = new Tuple<int, int>(-1, -1); int alpha = int.MinValue; int beta = int.MaxValue; int playerColor = GetCurrentPlayerColor(board); Tuple<int, int>[,] actions = GenerateActions(board); foreach (Tuple<int, int> action in Shuffle(actions)) { int[,] newBoard = UpdateBoard(board, action.Item1, action.Item2, playerColor); int score = MinValue(newBoard, alpha, beta, depth - 1, playerColor); if (score > alpha) { alpha = score; bestMove = action; } } return bestMove; } bool IsGameOver(int[,] board) { //TODO:判断游戏是否结束 return false; } // MaxValue函数 int MaxValue(int[,] board, int alpha, int beta, int depth, int playerColor) { if (depth == 0 || IsGameOver(board)) { return Evaluate(board, playerColor); } int v = int.MinValue; Tuple<int, int>[,] actions = GenerateActions(board); foreach (Tuple<int, int> action in Shuffle(actions)) { int[,] newBoard = UpdateBoard(board, action.Item1, action.Item2, playerColor); int score = MinValue(newBoard, alpha, beta, depth - 1, playerColor); if (score > v) { v = score; } if (v >= beta) { return v; } alpha = Math.Max(alpha, v); } return v; } // MinValue函数 int MinValue(int[,] board, int alpha, int beta, int depth, int playerColor) { if (depth == 0 || IsGameOver(board)) { return Evaluate(board, playerColor); } int v = int.MaxValue; Tuple<int, int>[,] actions = GenerateActions(board); foreach (Tuple<int, int> action in Shuffle(actions)) { int[,] newBoard = UpdateBoard(board, action.Item1, action.Item2, 3 - playerColor); int score = MaxValue(newBoard, alpha, beta, depth - 1, playerColor); if (score < v) { v = score; } if (v <= alpha) { return v; } beta = Math.Min(beta, v); } return v; } // 评估函数 int Evaluate(int[,] board, int player) { int score = 0; // Check horizontal score += EvaluateDirection(board, player, 0, 1); // right score += EvaluateDirection(board, player, 0, -1); // left // Check vertical score += EvaluateDirection(board, player, 1, 0); // down // Check diagonal score += EvaluateDirection(board, player, 1, 1); // diagonal down-right score += EvaluateDirection(board, player, 1, -1); // diagonal down-left return score; } private int EvaluateDirection(int[,] board, int player, int deltaRow, int deltaCol) { int score = 0; for (int row = 0; row < board.Rows; row++) { for (int col = 0; col < board.Columns; col++) { int consecutiveCount = 0; int emptyCount = 0; bool blocked = false; for (int i = 0; i < 4; i++) { int currentRow = row + i * deltaRow; int currentCol = col + i * deltaCol; if (!board.IsValidPosition(currentRow, currentCol)) { blocked = true; break; } if (board[currentRow, currentCol] == player) { consecutiveCount++; } else if (board[currentRow, currentCol] == Player.None) { emptyCount++; } else { blocked = true; break; } } if (!blocked) { if (consecutiveCount == 4) { return WINNING_SCORE; } else if (consecutiveCount == 3 && emptyCount == 1) { score += THREE_IN_A_ROW; } else if (consecutiveCount == 2 && emptyCount == 2) { score += TWO_IN_A_ROW; } else if (consecutiveCount == 1 && emptyCount == 3) { score += ONE_IN_A_ROW; } } } } return score; } // 生成所有可行的下子位置 Tuple<int, int>[,] GenerateActions(int[,] board) { int size = board.GetLength(0); Tuple<int, int>[,] actions = new Tuple<int, int>[size, size]; int count = 0; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { if (IsValidMove(board, i, j)) { actions[i, j] = new Tuple<int, int>(i, j); count++; } } } Tuple<int, int>[,] result = new Tuple<int, int>[count, 1]; int index = 0; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { if (actions[i, j] != null) { result[index, 0] = actions[i, j]; index++; } } } return result; } // 更新棋盘 int[,] UpdateBoard(int[,] board, int x, int y, int color) { int size = board.GetLength(0); int[,] newBoard = new int[size, size]; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { newBoard[i, j] = board[i, j]; } } newBoard[x, y] = color; return newBoard; } // 洗牌算法 Tuple<int, int>[,] Shuffle(Tuple<int, int>[,] array) { System.Random rng = new System.Random(); int n = array.GetLength(0); while (n > 1) { n--; int k = rng.Next(n + 1); Tuple<int, int>[,] value = array[k, 0]; array[k, 0] = array[n, 0]; array[n, 0] = value; } return array; } }
它可以根据你调用AlphaBetaSearch方法时,传入depth深度的值,用于找出对于接下来depth步之内最有利的下一步位置。这种博弈算法在对AI水平要求比较高的情况下才使用,AI难度已经非常的高,且对性能要求也比较高。如果不是专门研究五子棋棋法的,不必使用这么高端的算法。用上面第二点的积分算法即可。
三、总结。
以上即时,从不同层次结构对五子棋AI算法的探讨和实现。希望给大家带来一定系统性的认识。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。