赞
踩
图像分割
利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。
图像分割技术已在实际生活中得到广泛的应用。例如:在机车检验领域, 可以应用到轮毂裂纹图像的分割,及时发现裂纹,保证行车安全;在生物医学工程方面,对肝脏CT图像进行分割,为临床治疗和病理学研究提供帮助。
目标
利用K-means聚类算法对图像像素点颜色进行聚类实现简单的图像分割
输出
同一聚类中的点使用相同颜色标记,不同聚类颜色不同。
1
建立工程并导入sklearn包
创建Kmeans.py文件;
导入sklearn相关包;
代码如下:
import numpy as np
import PIL.Image as image #加载PIL包,用于加载创建图片
from sklearn.cluster import KMeans #加载Kmeans算法
2
加载图片并进行预处理
加载训练数据,代码如下:
def loadData(filePath):
f = open(filePath,'rb')#以二进制形式打开文件
data = []
img = image.open(f)#以列表形式返回图片像素值
m,n = img.size#获得图片的大小
for i in range(m):#将每个像素点RGB颜色处理到0-1
for j in range(n):#范围内并存放进data
x,y,z = img.getpixel((i,j))
data.append([x/256.0,y/256.0,z/256.0])
f.close()
return np.mat(data),m,n#以矩阵形式返回data ,以及图片大小
imgData,row,col = loadData('kmeans/bull.jpg')#加载数据
3
加载Kmeans聚类算法
加载Kmeans聚类算法(其中n_clusters属性指定了聚类中心的个数为3):
km = KMeans(n_clusters=3)
4
对像素点进行聚类并输出
依据聚类中心,对属于同一聚类的点使用同样的颜色进行标记:
#聚类获得每个像素所属的类型
label = KMeans(n_clusters=4).fit_predict(imgData)
label = label.reshape([row,col])
#创建一张新的灰度图保存聚类后的结果
pic_new = image.new("L", (row, col))
#根据所属类别向图片中添加灰度值
for i in range(row):
for j in range(col):
pic_new.putpixel((i,j), int(256/(label[i][j]+1)))
#以JPEG格式保存图像
pic_new.save("result-bull-4.jpg", "JPEG")
总结
通过设置不同的k值,能够得到不同的聚类结果。同时,k值的不确定也是Kmeans算法的一个缺点。往往为了达到好的实验结果,需要进行多次尝试才能够选取最优的k值。而像层次聚类的算法,就无需指定k值,只要给定限制条件,就能自动地得到类别数k。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。