赞
踩
ACM SIGKDD(国际数据挖掘与知识发现大会,简称KDD)会议始于1989年,是数据挖掘领域历史最悠久、规模最大的国际顶级学术会议,也是首个引入大数据、数据科学、预测分析、众包等概念的会议,每年吸引了大量数据挖掘、机器学习、大数据和人工智能等领域的研究学者、从业人员参与。
AMiner通过AI技术,对 KDD2023 收录的会议论文进行了分类整理,今日分享的是表征学习主题论文!(由于篇幅关系,本篇只展现部分论文,点击阅读原文可直达KDD顶会页面查看所有论文)
1.DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection
链接:https://www.aminer.cn/pub/6492753bd68f896efa888f46/
2.GENERALIZED MATRIX LOCAL LOW RANK REPRESENTATION BY RANDOM PROJECTION AND SUBMATRIX PROPAGATION
链接:https://www.aminer.cn/pub/6433f6bc90e50fcafd6efdfd/
3.Joint Pre-training and Local Re-training: Transferable Representation Learning on Multi-source Knowledge Graphs
链接:https://www.aminer.cn/pub/647eaf51d68f896efad41d32/
4.Task Relation-aware Continual User Representation Learning
链接:https://www.aminer.cn/pub/647eaf35d68f896efad40763/
5.Dense Representation Learning and Retrieval for Tabular Data Prediction
链接:https://www.aminer.cn/pub/64af99fd3fda6d7f065a62e9/
6.Efficient and Effective Edge-wise Graph Representation Learning
链接:https://www.aminer.cn/pub/64af99fe3fda6d7f065a63b4/
7.CARL-G: Clustering-Accelerated Representation Learning on Graphs
链接:https://www.aminer.cn/pub/64af99fe3fda6d7f065a63ce/
8.LightPath: Lightweight and Scalable Path Representation Learning
链接:https://www.aminer.cn/pub/64af9a0b3fda6d7f065a70cd/
9.Urban Region Representation Learning with OpenStreetMap Building Footprints
链接:https://www.aminer.cn/pub/64af9a0b3fda6d7f065a70d1/
10.Representation Learning on Hyper-Relational and Numeric Knowledge Graphs with Transformers
链接:https://www.aminer.cn/pub/647572e0d68f896efa7b7983/
11.Expert Knowledge-Aware Image Difference Graph Representation Learning for Difference-Aware Medical Visual Question Answering
链接:https://www.aminer.cn/pub/64af9a023fda6d7f065a686d/
12.DyTed: Disentangled Representation Learning for Discrete-time Dynamic Graph
链接:https://www.aminer.cn/pub/64af9a093fda6d7f065a6eac/
13.Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks
链接:https://www.aminer.cn/pub/64af9a093fda6d7f065a6eb0/
为了让更多科研人更高效的获取文献知识,AMiner基于GLM-130B大模型能力,开发了Chatpaper,帮助科研人快速提高检索、阅读论文效率,获取最新领域研究动态,让科研工作更加游刃有余。
ChatPaper是一款集检索、阅读、知识问答于一体的对话式私有知识库,AMiner希望通过技术的力量,让大家更加高效地获取知识。
ChatPaper:https://www.aminer.cn/chat/g
KDD顶会:https://www.aminer.cn/conf/5ea1b22bedb6e7d53c00c41b/KDD2023
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。