赞
踩
1. 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。
2. 数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括中心化处理(Zero-centered或者Mean-subtraction)和缩放处理(Scale)。
1. 当数据(x)按照最小值中心化后,再按极差(最大值 - 最小值)缩放,数据移动了最小值个单位,并且会被收敛到[0,1]之间,而这个过程,就叫做数据归一化(Normalization,又称Min-Max Scaling)。公式如下:
注意:Normalization是归一化,不是正则化,真正的正则化是regularization,不是数据预处理的一种手段。归一化之后的数据服从正态分布。
2. 在sklearn当中,我们使用preprocessing.MinMaxScaler
来实现这个功能。MinMaxScaler
有一个重要参数feature_range
,可以控制我们希望把数据压缩到的范围,默认是[0,1]。
from sklearn.preprocessing import MinMaxScaler data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] scaler = MinMaxScaler() scaler = MinMaxScaler() #实例化 scaler = scaler.fit(data) #fit,在这里本质是生成min(x)和max(x) result = scaler.transform(data) #通过接口导出结果 print(result) #也可以一步到位:result_ = scaler.fit_transform(data) #训练和导出结果一步达成 #scaler.inverse_transform(result) #将归一化后的结果逆转 #feature_range=[5,10] data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] scaler = MinMaxScaler(feature_range=[5,10]) #依然实例化 result = scaler.fit_transform(data) #fit_transform一步导出结果 print(result)
3. 使用numpy来实现归一化:
import numpy as np
X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
#归一化
X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
print(X_nor)
#逆转归一化
X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)
print(X_returned)
1. 当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),而这个过程,就叫做数据标准化(Standardization,又称Z-score normalization)。公式如下:
from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差
x_std = scaler.transform(data) #通过接口导出结果
print(x_std)
#x_std.mean() 导出的结果是一个数组,用mean()查看均值
#x_std.std() 用std()查看方差
#scaler.fit_transform(data) 使用fit_transform(data)一步达成结果
#scaler.inverse_transform(x_std) 使用inverse_transform逆转标准化
大多数机器学习算法中,会选择StandardScaler来进行特征缩放,因为MinMaxScaler对异常值非常敏感。在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择。
MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中。
1. 类:sklearn.impute.SimpleImputer(missing_values=nan, strategy=’mean’, fill_value=None, verbose=0,copy=True)
。
2. 包括四个重要参数:
参数 | 含义和输入 |
---|---|
missing_values | 告诉SimpleImputer,数据中的缺失值长什么样,默认空值np.nan |
strategy | 我们填补缺失值的策略,默认均值。(1)输入“mean”使用均值填补(仅对数值型特征可用);(2)输入“median"用中值填补(仅对数值型特征可用);(3)输入"most_frequent”用众数填补(对数值型和字符型特征都可用);(4)输入“constant"表示请参考参数“fill_value"中的值(对数值型和字符型特征都可用) |
fill_value | 当参数startegy为”constant"的时候可用,可输入字符串或数字表示要填充的值,常用0 |
copy | 默认为True,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去。 |
from sklearn.impute import SimpleImputer imp_mean = SimpleImputer() #实例化,默认均值填补 imp_median = SimpleImputer(strategy="median") #用中位数填补 imp_0 = SimpleImputer(strategy="constant",fill_value=0) #用0填补 imp_mean = imp_mean.fit_transform(Age) #fit_transform一步完成调取结果 imp_median = imp_median.fit_transform(Age) imp_0 = imp_0.fit_transform(Age) #在这里我们使用中位数填补Age data.loc[:,"Age"] = imp_median data.info() #使用众数填补Embarked Embarked = data.loc[:,"Embarked"].values.reshape(-1,1) imp_mode = SimpleImputer(strategy = "most_frequent") data.loc[:,"Embarked"] = imp_mode.fit_transform(Embarked) data.info()
注:用Pandas和Numpy进行填补其实更加简单
import pandas as pd
data = pd.read_csv(r"D:\Download\Narrativedata.csv",index_col=0)
data.head()
data.loc[:,"Age"] = data.loc[:,"Age"].fillna(data.loc[:,"Age"].median())
#.fillna 在DataFrame里面直接进行填补
#Embarked只缺失了两行,我们这里将其删去,不进行填补
data.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False
1. 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型)。
然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的。比如说,学历的取值可以是[“小学”,“初中”,“高中”,“大学”],付费方式可能包含[“支付宝”,“现金”,“微信”]等等。在这种情况下,为了让数据适应算法和库,我们必须将数据进行编码,即是说,将文字型数据转换为数值型。
2. preprocessing.LabelEncoder
:标签专用,能够将分类转换为分类数值。
import pandas as pd
from sklearn.preprocessing import LabelEncoder
data = pd.read_csv(r"D:\Download\Narrativedata.csv",index_col=0)
y = data.iloc[:,-1] #要输入的是标签,不是特征矩阵,所以允许一维
le = LabelEncoder() #实例化
le = le.fit(y) #导入数据
label = le.transform(y) #transform接口调取结果
#也可以一行:data.iloc[:,-1] = LabelEncoder().fit_transform(data.iloc[:,-1])
print(label)
注:此时输出结果全是0、1、2构成的矩阵。
3. preprocessing.OrdinalEncoder
:特征专用,能够将分类特征转换为分类数值。
from sklearn.preprocessing import OrdinalEncoder
#接口categories_对应LabelEncoder的接口classes_,一模一样的功能
data_ = data.copy()
data_.head()
OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_
data_.iloc[:,1:-1] = OrdinalEncoder().fit_transform(data_.iloc[:,1:-1])
print(data_.head())
1. 我们刚才已经用OrdinalEncoder
把分类变量Sex和Embarked都转换成数字对应的类别了。在舱门Embarked这一列中,我们使用[0,1,2]代表了三个不同的舱门,然而这种转换是正确的吗?
2. 我们来思考三种不同性质的分类数据:
(1)舱门(S,C,Q)
三种取值S,C,Q是相互独立的,彼此之间完全没有联系,表达的是S≠C≠Q的概念。这是名义变量。
(2)学历(小学,初中,高中)
三种取值不是完全独立的,我们可以明显看出,在性质上可以有高中>初中>小学这样的联系,学历有高低,但是学历取值之间却不是可以计算的,我们不能说小学 + 某个取值 = 初中。这是有序变量。
(3)体重(>45kg,>90kg,>135kg)
各个取值之间有联系,且是可以互相计算的,比如120kg - 45kg = 90kg,分类之间可以通过数学计算互相转换。这是有距变量。
然而在对特征进行编码的时候,这三种分类数据都会被我们转换为[0,1,2],这三个数字在算法看来,是连续且可以计算的,这三个数字相互不等,有大小,并且有着可以相加相乘的联系。所以算法会把舱门,学历这样的分类特征,都误会成是体重这样的分类特征。这是说,我们把分类转换成数字的时候,忽略了数字中自带的数学性质,所以给算法传达了一些不准确的信息,而这会影响我们的建模。
类别OrdinalEncoder可以用来处理有序变量,但对于名义变量,我们只有使用哑变量的方式来处理,才能够尽量向算法传达最准确的信息。
注:这样的变化,让算法能够彻底领悟,原来三个取值是没有可计算性质的,是“有你就没有我”的不等概念。在我们的数据中,性别和舱门,都是这样的名义变量。因此我们需要使用独热编码,将两个特征都转换为哑变量。
from sklearn.preprocessing import OneHotEncoder
X = data.iloc[:,1:-1]
enc = OneHotEncoder(categories='auto').fit(X)
result = enc.transform(X).toarray()
#可以看哪一列对应哪个特征
print(enc.get_feature_names())
3. 合并哑变量和原数据:
#axis=1,表示跨行进行合并,也就是将量表左右相连,如果是axis=0,就是将量表上下相连
newdata = pd.concat([data,pd.DataFrame(result)],axis=1)
newdata.drop(["Sex","Embarked"],axis=1,inplace=True)
newdata.columns = ["Age","Survived","Female","Male","Embarked_C","Embarked_Q","Embarked_S"]
print(newdata.head())
特征可以做哑变量,标签也可以吗?可以,使用类
sklearn.preprocessing.LabelBinarizer
可以对做哑变量,许多算法都可以处理多标签问题(比如说决策树),但是这样的做法在现实中不常见,因此我们在这里就不赘述了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。