当前位置:   article > 正文

大模型的幻觉 (Hallucination) 因何而来?如何解决幻觉问题?_大模型的幻觉问题如何解决

大模型的幻觉问题如何解决

编者按:目前大模型仍然存在一个非常致命的缺陷——大模型的“幻觉”(Hallucination)问题。为什么 LLM 会出现幻觉?如何缓解这种情况?使用的数据集对此现象的影响几何?今天为大家带来的这篇文章将一一解答。

作者首先分析了LLM中出现幻觉的原因,主要是由于训练数据的压缩以及信息的不一致、受限或过时造成的。之后,作者通过对TruthfulQA数据集进行多次实验,比较了多种减少幻觉的方法:降低temperature值限制模型的创造力;使用逐步推理的prompt提高回答的准确性;融合外部知识库增强模型效果。作者发现prompt工程技术尤其关键,必要时可以链接外部知识库。

本文总结了当下缓解大语言模型“幻觉”问题的几种主流方法,有助于构建更可靠、可解释的LLM系统,具有较重要的参考意义。我们期待看到未来LLM中幻觉问题能够得到更多研究与应用突破。

以下是译文,enjoy!

作者 | Sergei Savvov

编译 | 岳扬

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/196414
推荐阅读
相关标签