赞
踩
在本篇文章当中主要给大家介绍在 cpython 内部是如何实现整型数据 int 的,主要是分析 int 类型的表示方式,分析 int 类型的巧妙设计。
在 cpython 内部的 int 类型的实现数据结构如下所示:
typedef struct _longobject PyLongObject; struct _longobject { PyObject_VAR_HEAD digit ob_digit[1]; }; #define PyObject_VAR_HEAD PyVarObject ob_base; typedef struct { PyObject ob_base; Py_ssize_t ob_size; /* Number of items in variable part */ } PyVarObject; typedef struct _object { _PyObject_HEAD_EXTRA Py_ssize_t ob_refcnt; struct _typeobject *ob_type; } PyObject;
上面的数据结构用图的方式表示出来如下图所示:
首先我们知道在 python 当中的整数是不会溢出的,这正是 PyLongObject 使用数组的原因。在 cpython 内部的实现当中,整数有 0 、正数、负数,对于这一点在 cpython 当中有以下几个规定:
我们下面使用几个例子来深入理解一下上面的规则:
在上图当中 ob_size 大于 0 ,说明这个数是一个正数,而 ob_digit 指向一个 int32 的数据,数的值等于 10,因此上面这个数表示整数 10 。
同理 ob_size 小于 0,而 ob_digit 等于 10,因此上图当中的数据表示 -10 。
上面是一个 ob_digit 数组长度为 2 的例子,上面所表示数据如下所示:
1⋅20+1⋅21+1⋅22+…+1⋅229+0⋅230+0⋅231+1⋅2321 \cdot2^0 + 1 \cdot2^1 + 1 \cdot2^2 + … + 1 \cdot2^{29} + 0 \cdot2^{30} + 0 \cdot2^{31} + 1 \cdot2^{32} 1⋅20+1⋅21+1⋅22+…+1⋅229+0⋅230+0⋅231+1⋅232
因为对于每一个数组元素来说我们只使用前 30 位,因此到第二个整型数据的时候正好对应着 2^{30},大家可以对应着上面的结果了解整个计算过程。
上面也就很简单了:
−(1⋅20+1⋅21+1⋅22+…+1⋅229+0⋅230+0⋅231+1⋅232)-(1 \cdot2^0 + 1 \cdot2^1 + 1 \cdot2^2 + … + 1 \cdot2^{29} + 0 \cdot2^{30} + 0 \cdot2^{31} + 1 \cdot2^{32}) −(1⋅20+1⋅21+1⋅22+…+1⋅229+0⋅230+0⋅231+1⋅232)
为了避免频繁的创建一些常用的整数,加快程序执行的速度,我们可以将一些常用的整数先缓存起来,如果需要的话就直接将这个数据返回即可。在 cpython 当中相关的代码如下所示:(小整数池当中缓存数据的区间为[-5, 256])
#define NSMALLPOSINTS 257
#define NSMALLNEGINTS 5
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
我们使用下面的代码进行测试,看是否使用了小整数池当中的数据,如果使用的话,对于使用小整数池当中的数据,他们的 id() 返回值是一样的,id 这个内嵌函数返回的是 python 对象的内存地址。
>>> a = 1
>>> b = 2
>>> c = 1
>>> id(a), id(c)
(4343136496, 4343136496)
>>> a = -6
>>> c = -6
>>> id(a), id(c)
(4346020624, 4346021072)
>>> a = 257
>>> b = 257
>>> id(a), id(c)
(4346021104, 4346021072)
>>>
从上面的结果我们可以看到的是,对于区间[-5, 256]当中的值,id 的返回值确实是一样的,不在这个区间之内的返回值就是不一样的。
我们还可以这个特性实现一个小的 trick,就是求一个 PyLongObject 对象所占的内存空间大小,因为我们可以使用 -5 和 256 这两个数据的内存首地址,然后将这个地址相减就可以得到 261 个 PyLongObject 所占的内存空间大小(注意虽然小整数池当中一共有 262 个数据,但是最后一个数据是内存首地址,并不是尾地址,因此只有 261 个数据),这样我们就可以求一个 PyLongObject 对象的内存大小。
>>> a = -5
>>> b = 256
>>> (id(b) - id(a)) / 261
32.0
>>>
从上面的输出结果我们可以看到一个 PyLongObject 对象占 32 个字节。我们可以使用下面的 C 程序查看一个 PyLongObject 真实所占的内存空间大小。
#include "Python.h"
#include <stdio.h>
int main()
{
printf("%ld\n", sizeof(PyLongObject));
return 0;
}
上面的程序的输出结果如下所示:
上面两个结果是相等的,因此也验证了我们的想法。
从小整数池当中获取数据的核心代码如下所示:
static PyObject *
get_small_int(sdigit ival)
{
PyObject *v;
assert(-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS);
v = (PyObject *)&small_ints[ival + NSMALLNEGINTS];
Py_INCREF(v);
return v;
}
关于 PyLongObject 的操作有很多,我们看一下加法的实现,见微知著,剩下的其他的方法我们就不介绍了,大家感兴趣可以去看具体的源代码。
如果你了解过大整数加法就能够知道,大整数加法的具体实现过程了,在 cpython 内部的实现方式其实也是一样的,就是不断的进行加法操作然后进行进位操作。
#define Py_ABS(x) ((x) < 0 ? -(x) : (x)) // 返回 x 的绝对值 #define PyLong_BASE ((digit)1 << PyLong_SHIFT) #define PyLong_MASK ((digit)(PyLong_BASE - 1)) static PyLongObject * x_add(PyLongObject *a, PyLongObject *b) { // 首先获得两个整型数据的 size Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b)); PyLongObject *z; Py_ssize_t i; digit carry = 0; // 确保 a 保存的数据 size 是更大的 /* Ensure a is the larger of the two: */ if (size_a < size_b) { { PyLongObject *temp = a; a = b; b = temp; } { Py_ssize_t size_temp = size_a; size_a = size_b; size_b = size_temp; } } // 创建一个新的 PyLongObject 对象,而且数组的长度是 size_a + 1 z = _PyLong_New(size_a+1); if (z == NULL) return NULL; // 下面就是整个加法操作的核心 for (i = 0; i < size_b; ++i) { carry += a->ob_digit[i] + b->ob_digit[i]; // 将低 30 位的数据保存下来 z->ob_digit[i] = carry & PyLong_MASK; // 将 carry 右移 30 位,如果上面的加法有进位的话 刚好可以在下一次加法当中使用(注意上面的 carry) // 使用的是 += 而不是 = carry >>= PyLong_SHIFT; // PyLong_SHIFT = 30 } // 将剩下的长度保存 (因为 a 的 size 是比 b 大的) for (; i < size_a; ++i) { carry += a->ob_digit[i]; z->ob_digit[i] = carry & PyLong_MASK; carry >>= PyLong_SHIFT; } // 最后保存高位的进位 z->ob_digit[i] = carry; return long_normalize(z); // long_normalize 这个函数的主要功能是保证 ob_size 保存的是真正的数据的长度 因为可以是一个正数加上一个负数 size 还变小了 } PyLongObject * _PyLong_New(Py_ssize_t size) { PyLongObject *result; /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) + sizeof(digit)*size. Previous incarnations of this code used sizeof(PyVarObject) instead of the offsetof, but this risks being incorrect in the presence of padding between the PyVarObject header and the digits. */ if (size > (Py_ssize_t)MAX_LONG_DIGITS) { PyErr_SetString(PyExc_OverflowError, "too many digits in integer"); return NULL; } // offsetof 会调用 gcc 的一个内嵌函数 __builtin_offsetof // offsetof(PyLongObject, ob_digit) 这个功能是得到 PyLongObject 对象 字段 ob_digit 之前的所有字段所占的内存空间的大小 result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) + size*sizeof(digit)); if (!result) { PyErr_NoMemory(); return NULL; } // 将对象的 result 的引用计数设置成 1 return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size); } static PyLongObject * long_normalize(PyLongObject *v) { Py_ssize_t j = Py_ABS(Py_SIZE(v)); Py_ssize_t i = j; while (i > 0 && v->ob_digit[i-1] == 0) --i; if (i != j) Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; return v; }
在本篇文章当中主要给大家介绍了 cpython 内部是如何实现整型数据 int 的,分析了 int 类型的表示方式和设计。int 内部使用 digit 来表示 32 位的整型数据,同时为了避免溢出的问题,只会使用其中的前 30 位。在 cpython 内部的实现当中,整数有 0 、正数、负数,对于这一点有以下几个规定:
cpython 使用这种方式的主要原理就是大整数的加减乘除,本篇文章主要是介绍了加法操作,大家如果感兴趣可以自行阅读其他的源程序。
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。