赞
踩
当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。
当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。
如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。
如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。
官网示例:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
spec.containers[].resources.requests.cpu //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu //定义 cpu 的资源上限
spec.containers[].resources.limits.memory //定义内存的资源上限
CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。
内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=103=1000,1MB=106=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=210=1024,1MiB=220=1048576=1024KiB
PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。
https://kubernetes.io/zh-cn/docs/concepts/configuration/manage-resources-containers/
探针是由kubelet对容器执行的定期诊断。
1 livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。
2 readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。
3 startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。
1 exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。
2 tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。
3 httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
每次探测都将获得以下三种结果之一:
●成功:容器通过了诊断。
●失败:容器未通过诊断。
●未知:诊断失败,因此不会采取任何行动
可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。
vim exec.yaml apiVersion: v1 kind: Pod metadata: name: liveness-exec namespace: default spec: containers: - name: liveness-exec-container image: busybox imagePullPolicy: IfNotPresent command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"] livenessProbe: exec: command: ["test","-e","/tmp/live"] initialDelaySeconds: 1 periodSeconds: 3 #initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。 #periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。 #failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。 #timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。) kubectl create -f exec.yaml kubectl describe pods liveness-exec kubectl get pods -w
在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。
任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。
vim httpget.yaml apiVersion: v1 kind: Pod metadata: name: liveness-httpget namespace: default spec: containers: - name: liveness-httpget-container image: soscscs/myapp:v1 imagePullPolicy: IfNotPresent ports: - name: http containerPort: 80 livenessProbe: httpGet: port: http path: /index.html initialDelaySeconds: 1 periodSeconds: 3 timeoutSeconds: 10 kubectl create -f httpget.yaml kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html kubectl get pods
这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。
vim tcpsocket.yaml apiVersion: v1 kind: Pod metadata: name: probe-tcp spec: containers: - name: nginx image: soscscs/myapp:v1 livenessProbe: tcpSocket: port: 8080 initialDelaySeconds: 5 periodSeconds: 10 failureThreshold: 2 timeoutSeconds: 1 kubectl apply -f tcpsocket.yaml #运行 kubectl exec -it probe-tcp -- netstat -natp #这个命令的作用是在 Kubernetes 集群中,以交互式的方式进入名为 probe-tcp 的 Pod 内部,并执行 netstat -natp 命令 kubectl get pods -w #观察重启的秒数
1 vim readiness-httpget.yaml apiVersion: v1 kind: Pod metadata: name: readiness-httpget namespace: default spec: containers: - name: readiness-httpget-container image: soscscs/myapp:v1 imagePullPolicy: IfNotPresent ports: - name: http containerPort: 80 readinessProbe: httpGet: port: 80 path: /index1.html initialDelaySeconds: 1 periodSeconds: 3 livenessProbe: httpGet: port: http path: /index.html initialDelaySeconds: 1 periodSeconds: 3 timeoutSeconds: 10 2 kubectl create -f readiness-httpget.yaml 3 readiness探测失败,无法进入READY状态 kubectl get pods
1 kubectl exec -it readiness-httpget sh
cd /usr/share/nginx/html/ #进入到容器
ls
50x.html index.html
echo 123 > index1.html #输入内容
exit
2 kubectl get pods #查看pod状态
3 kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html
#删除内容
4 kubectl get pods -w #查看状态
vim readiness-myapp.yaml apiVersion: v1 kind: Pod metadata: name: myapp1 labels: app: myapp spec: containers: - name: myapp image: soscscs/myapp:v1 ports: - name: http containerPort: 80 readinessProbe: httpGet: port: 80 path: /index.html initialDelaySeconds: 5 periodSeconds: 5 timeoutSeconds: 10 --- apiVersion: v1 kind: Pod metadata: name: myapp2 labels: app: myapp spec: containers: - name: myapp image: soscscs/myapp:v1 ports: - name: http containerPort: 80 readinessProbe: httpGet: port: 80 path: /index.html initialDelaySeconds: 5 periodSeconds: 5 timeoutSeconds: 10 --- apiVersion: v1 kind: Pod metadata: name: myapp3 labels: app: myapp spec: containers: - name: myapp image: soscscs/myapp:v1 ports: - name: http containerPort: 80 readinessProbe: httpGet: port: 80 path: /index.html initialDelaySeconds: 5 periodSeconds: 5 timeoutSeconds: 10 --- apiVersion: v1 kind: Service metadata: name: myapp spec: selector: app: myapp type: ClusterIP ports: - name: http port: 80 targetPort: 80
kubectl create -f readiness-myapp.yaml
kubectl get pods,svc,endpoints -o wide
kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html
//readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
vim post.yaml apiVersion: v1 kind: Pod metadata: name: lifecycle-demo spec: containers: - name: lifecycle-demo-container image: soscscs/myapp:v1 lifecycle: #此为关键字段 postStart: exec: command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"] preStop: exec: command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"] volumeMounts: - name: message-log mountPath: /var/log/nginx/ readOnly: false initContainers: - name: init-myservice image: soscscs/myapp:v1 command: ["/bin/sh", "-c", "echo 'Hello initContainers' >> /var/log/nginx/message"] volumeMounts: - name: message-log mountPath: /var/log/nginx/ readOnly: false volumes: - name: message-log hostPath: path: /data/volumes/nginx/log/ type: DirectoryOrCreate
1 在master上创建pod kubectl create -f post.yaml kubectl get pods -o wide kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message 2 在 node02 节点上查看 cd /data/volumes/nginx/log/ cat message Hello initContainers Hello from the postStart handler 3 删除 pod 后,再在 node02 节点上查看 kubectl delete pod lifecycle-demo 4 cat message Hello initContainers Hello from the postStart handler Hello from the poststop handler #由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。