当前位置:   article > 正文

centos7.4安装高可用(haproxy+keepalived实现)kubernetes1.6.0集群(开启TLS认证)

centos7.4安装高可用(haproxy+keepalived实现)kubernetes1.6.0集群(开启TLS认证)

目录

 

    • 目录
    • 前言
    • 集群详情
    • 环境说明
    • 安装前准备
    • 提醒
    • 一、创建TLS证书和秘钥
      • 安装CFSSL
      • 创建 CA (Certificate Authority)
        • 创建 CA 配置文件
        • 创建 CA 证书签名请求
        • 生成 CA 证书和私钥
      • 创建 kubernetes 证书
        • 生成 kubernetes 证书和私钥
      • 创建 admin 证书
        • 生成 admin 证书和私钥
      • 创建 kube-proxy 证书
        • 生成 kube-proxy 客户端证书和私钥
      • 校验证书
        • 使用 opsnssl 命令
        • 使用 cfssl-certinfo 命令
      • 分发证书
    • 二、安装kubectl命令行工具
      • 下载 kubectl
      • 创建 kubectl kubeconfig 文件
    • 三、创建 kubeconfig 文件
      • 创建 TLS Bootstrapping Token
      • 创建 kubelet bootstrapping kubeconfig 文件
      • 创建 kube-proxy kubeconfig 文件
      • 分发 kubeconfig 文件
    • 四、创建高可用 etcd 集群
      • TLS 认证文件
      • 安装etcd
      • 创建 etcd 的 systemd unit 文件
      • 启动 etcd 服务
      • 验证服务
    • 五、部署 haproxy+keepalived
      • 安装 haproxy+keepalived
      • 配置 keepalived
      • 配置 haproxy
      • 启动 haproxy+keepalived
    • 六、安装 flannel 网络插件
      • 安装 flannel
      • 启动flannel服务
    • 七、部署master节点
      • TLS 证书文件
      • 下载二进制文件
      • 配置和启动 kube-apiserver
      • 配置和启动 kube-controller-manager
      • 配置和启动 kube-scheduler
    • 八、部署node节点
      • 安装配置Docker
      • 启动docker
      • 安装和配置kubelet
      • 启动kubelet
      • 通过 kublet 的 TLS 证书请求
      • 配置 kube-proxy
      • 启动 kube-proxy
      • 验证测试
    • 九、安装kubedns插件
      • 系统预定义的 RoleBinding
      • 配置 kube-dns ServiceAccount
      • 配置 kube-dns 服务
      • 配置 kube-dns Deployment
      • 执行所有定义文件
      • 检查 kubedns 功能
    • 十、安装dashboard插件
      • 配置 dashboard ServiceAccount
      • 配置dashboard-controller
      • 配置dashboard-service
      • 执行所有定义文件
      • 检查执行结果
      • 访问dashboard
        • 通过 kubectl proxy 访问 dashboard
        • 通过 API server 访问dashboard
      • 更新dashboard到v1.6.3
    • 十一、安装heapster插件
      • 配置 heapster-deployment
      • 配置 grafana-deployment
      • 配置 influxdb-deployment
      • 执行所有定义文件
      • 检查执行结果
      • 访问 grafana
      • 访问 influxdb admin UI
    • 十二、安装EFK插件
      • 配置 es
      • 配置 fluentd-es
      • 配置 kibana
      • 给 Node 设置标签
      • 执行定义文件
      • 检查执行结果
      • 访问 kibana

 

前言

本文档使用haproxy+keepalived的方式部署为集群高可用模式,lvs+keepalived也可以实现,理论上来说可以照搬用于生产。本文档最初是基于kubenetes1.6版本编写的,对于kuberentes1.8及以上版本同样适用,只是个别位置有稍许变动,变动的地方将特别注明版本要求。

本系列文档介绍使用二进制部署 kubernetes 集群的所有步骤,而不是使用 kubeadm 等自动化方式来部署集群,同时开启了集群的TLS安全认证,安装时使用vmvare创建的虚拟机,理论上适用于所有bare metal环境、on-premise环境和公有云环境。

在部署的过程中,将详细列出各组件的启动参数,给出配置文件,详解它们的含义和可能遇到的问题。

部署完成后,你将理解系统各组件的交互原理,进而能快速解决实际问题。

所以本文档主要适合于那些有一定 kubernetes 基础,想通过一步步部署的方式来学习和了解系统配置、运行原理的人。

集群详情

  • OS:CentOS Linux release 7.4.1708 (Core) 3.10.0-693.el7.x86_64
  • Kubernetes 1.6.0+(最低的版本要求是1.6)
  • haproxy(yum安装)
  • keepalived(yum安装)
  • docker-1.13.1 or docker-ce-17.12.1(使用yum安装 or rpm)
  • etcd-3.2.15(使用yum安装)
  • flannel-0.7.1 vxlan 或者 host-gw 网络(使用yum安装)
  • TLS 认证通信 (所有组件,如 etcd、kubernetes master 和 node)
  • RBAC 授权
  • kubelet TLS BootStrapping
  • kubedns、dashboard、heapster(influxdb、grafana)、EFK(elasticsearch、fluentd、kibana) 集群插件
  • 私有docker镜像仓库harbor(请自行部署,harbor提供离线安装包,直接使用docker-compose启动即可)

环境说明

在下面的步骤中,将在8台CentOS系统的虚拟机上部署高可用集群。

角色分配如下:
keepalived1+haproxy1+etcd1: 192.168.223.201
keepalived2+haproxy2+etcd2: 192.168.223.202
keepalived3+haproxy3+etcd3: 192.168.223.203
Master1: 192.168.223.204
Master2: 192.168.223.205
Node1: 192.168.223.206
Node2: 192.168.223.207
docker+hub: 192.168.223.208

vip: 192.168.223.200
集群访问kube-apiserver使用此地址

注意: etcd和keepalived+haproxy复用3台主机,实际生产最好2台单独部署keepalived+haproxy,3台单独部署etcd

安装前准备

  1. 关闭所有节点的SELinux
  1. 修改 /etc/selinux/config 文件中设置 SELINUX=disabled
  2. setenforce 0
  1. 关闭所有节点防火墙firewalld
  1. systemctl disable firewalld;
  2. systemctl stop firewalld;
  1.  192.168.223.208 上安装harbor私有镜像仓库

参考教程:https://github.com/vmware/harbor 需要使用到的所有docker images:https://pan.baidu.com/s/1YH6OCpmz8EiO1OlmmxLtfg 密码:k2mr

提醒

  1. 由于启用了 TLS 双向认证、RBAC 授权等严格的安全机制,建议从头开始部署,而不要从中间开始,否则可能会认证、授权等失败!
  2. 部署过程中需要有很多证书的操作,请大家耐心操作,不明白的操作可以参考本书中的其他章节的解释。
  3. 该部署操作仅是搭建成了一个可用 kubernetes 集群,而很多地方还需要进行优化,heapster 插件、EFK 插件不一定会用于真实的生产环境中,但是通过部署这些插件,可以让大家了解到如何部署应用到集群上

以下正式开始部署


一、创建TLS证书和秘钥

这一步是在安装配置kubernetes的所有步骤中最容易出错也最难于排查问题的一步,而这却刚好是第一步,万事开头难,不要因为这点困难就望而却步。

kubernetes 系统的各组件需要使用 TLS 证书对通信进行加密,本文档使用 CloudFlare 的 PKI 工具集 cfssl 来生成 Certificate Authority (CA) 和其它证书;

生成的 CA 证书和秘钥文件如下:

  • ca-key.pem
  • ca.pem
  • kubernetes-key.pem
  • kubernetes.pem
  • kube-proxy.pem
  • kube-proxy-key.pem
  • admin.pem
  • admin-key.pem

使用证书的组件如下:

  • etcd:使用 ca.pem、kubernetes-key.pem、kubernetes.pem;
  • kube-apiserver:使用 ca.pem、kubernetes-key.pem、kubernetes.pem;
  • kubelet:使用 ca.pem;
  • kube-proxy:使用 ca.pem、kube-proxy-key.pem、kube-proxy.pem;
  • kubectl:使用 ca.pem、admin-key.pem、admin.pem;
  • kube-controller-manager:使用 ca-key.pem、ca.pem

注意: 以下操作都在 192.168.223.201 主机上执行,然后分发到集群所有主机,证书只需要创建一次即可,以后在向集群中添加新节点时只要将 /etc/kubernetes/ 目录下的证书拷贝到新节点上即可。

安装CFSSL

直接使用二进制源码包安装

  1. wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
  2. chmod +x cfssl_linux-amd64
  3. mv cfssl_linux-amd64 /usr/bin/cfssl
  4. wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 chmod +x cfssljson_linux-amd64 mv cfssljson_linux-amd64 /usr/bin/cfssljson wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 chmod +x cfssl-certinfo_linux-amd64 mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo

创建 CA (Certificate Authority)

创建 CA 配置文件
  1. mkdir /root/ssl
  2. cd /root/ssl
  3. cat > ca-config.json << EOF
  4. {
  5. "signing": {
  6. "default": {
  7. "expiry": "87600h"
  8. },
  9. "profiles": { "kubernetes": { "usages": [ "signing", "key encipherment", "server auth", "client auth" ], "expiry": "87600h" } } } } EOF
  • ca-config.json:可以定义多个 profiles,分别指定不同的过期时间、使用场景等参数;后续在签名证书时使用某个 - profile;
  • signing:表示该证书可用于签名其它证书;生成的 ca.pem 证书中 CA=TRUE;
  • server auth:表示client可以用该 CA 对server提供的证书进行验证;
  • client auth:表示server可以用该CA对client提供的证书进行验证;
创建 CA 证书签名请求

创建 ca-csr.json 文件,内容如下:

  1. cat > ca-csr.json << EOF
  2. {
  3. "CN": "kubernetes",
  4. "key": {
  5. "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] } EOF
  • "CN":Common Name,kube-apiserver 从证书中提取该字段作为请求的用户名 (User Name);浏览器使用该字段验证网站是否合法;
  • "O":Organization,kube-apiserver 从证书中提取该字段作为请求用户所属的组 (Group);
生成 CA 证书和私钥
  1. cfssl gencert -initca ca-csr.json | cfssljson -bare ca
  2. ls ca*
  3. ca-config.json ca.csr ca-csr.json ca-key.pem ca.pem

创建 kubernetes 证书

创建 kubernetes 证书签名请求文件 kubernetes-csr.json:

  1. cat > kubernetes-csr.json << EOF
  2. {
  3. "CN": "kubernetes",
  4. "hosts": [
  5. "127.0.0.1",
  6. "192.168.223.200", "192.168.223.201", "192.168.223.202", "192.168.223.203", "192.168.223.204", "192.168.223.205", "192.168.223.206", "192.168.223.207", "192.168.223.208", "10.254.0.1", "kubernetes", "kubernetes.default", "kubernetes.default.svc", "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster.local" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] } EOF
  • 如果 hosts 字段不为空则需要指定授权使用该证书的 IP 或域名列表,由于该证书后续被 etcd 集群和 kubernetes master 集群使用,所以上面分别指定了 etcd 集群、kubernetes master 集群的主机 IP 和 kubernetes 服务的服务 IP(一般是 kube-apiserver 指定的 service-cluster-ip-range 网段的第一个IP,如 10.254.0.1)。
  • 以上节点的IP也可以更换为主机名。
生成 kubernetes 证书和私钥
  1. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes
  2. ls kubernetes*
  3. kubernetes.csr kubernetes-csr.json kubernetes-key.pem kubernetes.pem

创建 admin 证书

创建 admin 证书签名请求文件 admin-csr.json:

  1. cat > admin-csr.json << EOF
  2. {
  3. "CN": "admin",
  4. "hosts": [],
  5. "key": {
  6. "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "system:masters", "OU": "System" } ] } EOF
  • 后续 kube-apiserver 使用 RBAC 对客户端(如 kubelet、kube-proxy、Pod)请求进行授权;
  • kube-apiserver 预定义了一些 RBAC 使用的 RoleBindings,如 cluster-admin 将 Group system:masters 与 Role cluster-admin 绑定,该 Role 授予了调用kube-apiserver 的所有 API的权限;
  • O 指定该证书的 Group 为 system:masters,kubelet 使用该证书访问 kube-apiserver 时 ,由于证书被 CA 签名,所以认证通过,同时由于证书用户组为经过预授权的 system:masters,所以被授予访问所有 API 的权限;

注意: 这个admin 证书,是将来生成管理员用的kube config 配置文件用的,现在我们一般建议使用RBAC 来对kubernetes 进行角色权限控制, kubernetes 将证书中的CN 字段 作为User, O 字段作为 Group。

在搭建完 kubernetes 集群后,我们可以通过命令: kubectl get clusterrolebinding cluster-admin -o yaml ,查看到 clusterrolebinding cluster-admin 的 subjects 的 kind 是 Group,name 是 system:masters。 roleRef 对象是 ClusterRole cluster-admin。 意思是凡是 system:masters Group 的 user 或者 serviceAccount 都拥有 cluster-admin 的角色。 因此我们在使用 kubectl 命令时候,才拥有整个集群的管理权限。可以使用 kubectl get clusterrolebinding cluster-admin -o yaml 来查看。

  1. kubectl get clusterrolebinding cluster-admin -o yaml
  2. apiVersion: rbac.authorization.k8s.io/v1
  3. kind: ClusterRoleBinding
  4. metadata:
  5. annotations:
  6. rbac.authorization.kubernetes.io/autoupdate: "true" creationTimestamp: 2017-04-11T11:20:42Z labels: kubernetes.io/bootstrapping: rbac-defaults name: cluster-admin resourceVersion: "52" selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/cluster-admin uid: e61b97b2-1ea8-11e7-8cd7-f4e9d49f8ed0 roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-admin subjects: - apiGroup: rbac.authorization.k8s.io kind: Group name: system:masters
生成 admin 证书和私钥
  1. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json|cfssljson -bare admin
  2. ls admin*
  3. admin.csr admin-csr.json admin-key.pem admin.pem

创建 kube-proxy 证书

创建 kube-proxy 证书签名请求文件 kube-proxy-csr.json:

  1. cat > kube-proxy-csr.json << EOF
  2. {
  3. "CN": "system:kube-proxy",
  4. "hosts": [],
  5. "key": {
  6. "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] } EOF
  • CN 指定该证书的 User 为 system:kube-proxy;
  • kube-apiserver 预定义的 RoleBinding cluster-admin 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限;
生成 kube-proxy 客户端证书和私钥
  1. cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
  2. ls kube-proxy*
  3. kube-proxy.csr kube-proxy-csr.json kube-proxy-key.pem kube-proxy.pem

校验证书

使用 opsnssl 命令
  1. openssl x509 -noout -text -in kubernetes.pem
  2. ...
  3. Signature Algorithm: sha256WithRSAEncryption
  4. Issuer: C=CN, ST=BeiJing, L=BeiJing, O=k8s, OU=System, CN=Kubernetes Validity Not Before: Apr 5 05:36:00 2017 GMT Not After : Apr 5 05:36:00 2018 GMT Subject: C=CN, ST=BeiJing, L=BeiJing, O=k8s, OU=System, CN=kubernetes ... X509v3 extensions: X509v3 Key Usage: critical Digital Signature, Key Encipherment X509v3 Extended Key Usage: TLS Web Server Authentication, TLS Web Client Authentication X509v3 Basic Constraints: critical CA:FALSE X509v3 Subject Key Identifier: DD:52:04:43:10:13:A9:29:24:17:3A:0E:D7:14:DB:36:F8:6C:E0:E0 X509v3 Authority Key Identifier: keyid:44:04:3B:60:BD:69:78:14:68:AF:A0:41:13:F6:17:07:13:63:58:CD X509v3 Subject Alternative Name: DNS:kubernetes, DNS:kubernetes.default, DNS:kubernetes.default.svc, DNS:kubernetes.default.svc.cluster, DNS:kubernetes.default.svc.cluster.local, IP Address:127.0.0.1, IP Address:192.168.223.200, IP Address:192.168.223.201, IP Address:192.168.223.202, IP Address:192.168.223.203, IP Address:192.168.223.204, IP Address:192.168.223.205, IP Address:192.168.223.206, IP Address:192.168.223.207, IP Address:192.168.223.208, IP Address:10.254.0.1 ...
  • 确认 Issuer 字段的内容和 ca-csr.json 一致;
  • 确认 Subject 字段的内容和 kubernetes-csr.json 一致;
  • 确认 X509v3 Subject Alternative Name 字段的内容和 kubernetes-csr.json 一致;
  • 确认 X509v3 Key Usage、Extended Key Usage 字段的内容和 ca-config.json 中 kubernetes profile 一致;
使用 cfssl-certinfo 命令
  1. cfssl-certinfo -cert kubernetes.pem
  2. ...
  3. {
  4. "subject": {
  5. "common_name": "kubernetes",
  6. "country": "CN", "organization": "k8s", "organizational_unit": "System", "locality": "BeiJing", "province": "BeiJing", "names": [ "CN", "BeiJing", "BeiJing", "k8s", "System", "kubernetes" ] }, "issuer": { "common_name": "Kubernetes", "country": "CN", "organization": "k8s", "organizational_unit": "System", "locality": "BeiJing", "province": "BeiJing", "names": [ "CN", "BeiJing", "BeiJing", "k8s", "System", "Kubernetes" ] }, "serial_number": "174360492872423263473151971632292895707129022309", "sans": [ "127.0.0.1", "192.168.223.200", "192.168.223.201", "192.168.223.202", "192.168.223.203", "192.168.223.204", "192.168.223.205", "192.168.223.206", "192.168.223.207", "192.168.223.208", "10.254.0.1", "kubernetes", "kubernetes.default", "kubernetes.default.svc", "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster.local" ], "not_before": "2017-04-05T05:36:00Z", "not_after": "2018-04-05T05:36:00Z", "sigalg": "SHA256WithRSA", ...

分发证书

将生成的证书和秘钥文件(后缀名为.pem)拷贝到所有机器的 /etc/kubernetes/ssl 目录下备用;

  1. mkdir -p /etc/kubernetes/ssl
  2. cp *.pem /etc/kubernetes/ssl
  3. ssh 192.168.223.202 "mkdir -p /etc/kubernetes/ssl"
  4. ssh 192.168.223.203 "mkdir -p /etc/kubernetes/ssl" ssh 192.168.223.204 "mkdir -p /etc/kubernetes/ssl" ssh 192.168.223.205 "mkdir -p /etc/kubernetes/ssl" ssh 192.168.223.206 "mkdir -p /etc/kubernetes/ssl" ssh 192.168.223.207 "mkdir -p /etc/kubernetes/ssl" scp *.pem 192.168.223.202:/etc/kubernetes/ssl scp *.pem 192.168.223.203:/etc/kubernetes/ssl scp *.pem 192.168.223.204:/etc/kubernetes/ssl scp *.pem 192.168.223.205:/etc/kubernetes/ssl scp *.pem 192.168.223.206:/etc/kubernetes/ssl scp *.pem 192.168.223.207:/etc/kubernetes/ssl

二、安装kubectl命令行工具

一般只需在两台master主机安装即可

下载 kubectl

注意请下载对应的Kubernetes版本的安装包。

  1. wget https://dl.k8s.io/v1.6.0/kubernetes-client-linux-amd64.tar.gz
  2. tar -xzvf kubernetes-client-linux-amd64.tar.gz
  3. cp kubernetes/client/bin/kube* /usr/bin/ chmod a+x /usr/bin/kube*

创建 kubectl kubeconfig 文件

  1. export KUBE_APISERVER="https://192.168.223.200:6443"
  2. # 设置集群参数 kubectl config set-cluster kubernetes \ --certificate-authority=/etc/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} # 设置客户端认证参数 kubectl config set-credentials admin \ --client-certificate=/etc/kubernetes/ssl/admin.pem \ --embed-certs=true \ --client-key=/etc/kubernetes/ssl/admin-key.pem # 设置上下文参数 kubectl config set-context kubernetes \ --cluster=kubernetes \ --user=admin # 设置默认上下文 kubectl config use-context kubernetes
  • admin.pem 证书 OU 字段值为 system:masters,kube-apiserver 预定义的 RoleBinding cluster-admin 将 Group system:masters 与 Role cluster-admin 绑定,该 Role 授予了调用kube-apiserver 相关 API 的权限;
  • 生成的 kubeconfig 被保存到 ~/.kube/config 文件;

注意: ~/.kube/config文件拥有对该集群的最高权限,请妥善保管。如果node节点上需要使用kubelet工具,只需将此文件拷贝过去。

三、创建 kubeconfig 文件

kubelet、kube-proxy 等 Node 机器上的进程与 Master 机器的 kube-apiserver 进程通信时需要认证和授权;

kuberetes 1.4 开始支持由 kube-apiserver 为客户端生成 TLS 证书的 TLS Bootstrapping 功能,这样就不需要为每个客户端生成证书了;该功能当前仅支持为 kubelet 生成证书;

以下操作只需要在 master1: 192.168.223.204 节点上执行,生成的 *.kubeconfig 文件可以直接拷贝到其他节点的 /etc/kubernetes 目录下。

创建 TLS Bootstrapping Token

Token可以是任意的包含128 bit的字符串,可以使用安全的随机数发生器生成。

  1. export BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
  2. cat > token.csv <<EOF
  3. ${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap" EOF

注意: 请检查 token.csv 文件,确认其中的 ${BOOTSTRAP_TOKEN} 环境变量已经被真实的值替换。 **BOOTSTRAP_TOKEN ** 将被写入到 kube-apiserver 使用的 token.csv 文件和 kubelet 使用的 bootstrap.kubeconfig 文件,如果后续重新生成了 BOOTSTRAP_TOKEN,则需要:

更新 token.csv 文件,分发到所有机器 (master 和 node)的 /etc/kubernetes/ 目录下,分发到node节点上非必需; 重新生成 bootstrap.kubeconfig 文件,分发到所有 node 机器的 /etc/kubernetes/ 目录下; 重启 kube-apiserver 和 kubelet 进程; 重新 approve kubelet 的 csr 请求;

  1. cp token.csv /etc/kubernetes/
  2. scp token.csv 192.168.223.205:/etc/kubernetes/
  3. scp token.csv 192.168.223.206:/etc/kubernetes/ scp token.csv 192.168.223.207:/etc/kubernetes/

创建 kubelet bootstrapping kubeconfig 文件

  1. cd /etc/kubernetes
  2. export KUBE_APISERVER="https://192.168.223.200:6443"
  3. # 设置集群参数 kubectl config set-cluster kubernetes \ --certificate-authority=/etc/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=bootstrap.kubeconfig # 设置客户端认证参数 kubectl config set-credentials kubelet-bootstrap \ --token=${BOOTSTRAP_TOKEN} \ --kubeconfig=bootstrap.kubeconfig # 设置上下文参数 kubectl config set-context default \ --cluster=kubernetes \ --user=kubelet-bootstrap \ --kubeconfig=bootstrap.kubeconfig # 设置默认上下文 kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
  • --embed-certs 为 true 时表示将 certificate-authority 证书写入到生成的 bootstrap.kubeconfig 文件中;
  • 设置客户端认证参数时没有指定秘钥和证书,后续由 kube-apiserver 自动生成;

创建 kube-proxy kubeconfig 文件

  1. export KUBE_APISERVER="https://192.168.223.200:6443"
  2. # 设置集群参数 kubectl config set-cluster kubernetes \ --certificate-authority=/etc/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=${KUBE_APISERVER} \ --kubeconfig=kube-proxy.kubeconfig # 设置客户端认证参数 kubectl config set-credentials kube-proxy \ --client-certificate=/etc/kubernetes/ssl/kube-proxy.pem \ --client-key=/etc/kubernetes/ssl/kube-proxy-key.pem \ --embed-certs=true \ --kubeconfig=kube-proxy.kubeconfig # 设置上下文参数 kubectl config set-context default \ --cluster=kubernetes \ --user=kube-proxy \ --kubeconfig=kube-proxy.kubeconfig # 设置默认上下文 kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
  • 设置集群参数和客户端认证参数时 --embed-certs 都为 true,这会将 certificate-authority、client-certificate 和 client-key 指向的证书文件内容写入到生成的 kube-proxy.kubeconfig 文件中;
  • kube-proxy.pem 证书中 CN 为 system:kube-proxy,kube-apiserver 预定义的 RoleBinding cluster-admin 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限;

分发 kubeconfig 文件

将两个 kubeconfig 文件分发到所有 节点机器的 /etc/kubernetes/ 目录

  1. scp bootstrap.kubeconfig kube-proxy.kubeconfig 192.168.223.205:/etc/kubernetes/
  2. scp bootstrap.kubeconfig kube-proxy.kubeconfig 192.168.223.206:/etc/kubernetes/ scp bootstrap.kubeconfig kube-proxy.kubeconfig 192.168.223.207:/etc/kubernetes/

四、创建高可用 etcd 集群

kuberntes 系统使用 etcd 存储所有数据,本次部署一个三节点高可用 etcd 集群的步骤,分别为:192.168.223.201、192.168.223.202、192.168.223.203。

TLS 认证文件

需要为 etcd 集群创建加密通信的 TLS 证书,这里复用以前创建的 kubernetes 证书

  1. ls /etc/kubernetes/ssl/*.pem
  2. admin-key.pem admin.pem ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem kubernetes-key.pem kubernetes.pem
  • kubernetes 证书的 hosts 字段列表中包含上面三台机器的 IP,否则后续证书校验会失败;

安装etcd

 https://github.com/coreos/etcd/releases 页面下载最新版本的二进制文件

  1. wget https://github.com/coreos/etcd/releases/download/v3.1.5/etcd-v3.1.5-linux-amd64.tar.gz
  2. tar -xvf etcd-v3.1.5-linux-amd64.tar.gz mv etcd-v3.1.5-linux-amd64/etcd* /usr/sbin

或者直接使用yum命令安装:

yum install etcd -y
  • 建议使用yum安装

创建 etcd 的 systemd unit 文件

vi /usr/lib/systemd/system/etcd.service,内容如下。注意替换IP地址为你自己的etcd集群的主机IP。

  1. [Unit]
  2. Description=Etcd Server
  3. After=network.target
  4. After=network-online.target
  5. Wants=network-online.target
  6. Documentation=https://github.com/coreos
  7. [Service]
  8. Type=notify
  9. WorkingDirectory=/var/lib/etcd/
  10. EnvironmentFile=-/etc/etcd/etcd.conf
  11. ExecStart=/usr/sbin/etcd \
  12. --name ${ETCD_NAME} \
  13. --cert-file=/etc/kubernetes/ssl/kubernetes.pem \
  14. --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ --peer-cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --peer-key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ --trusted-ca-file=/etc/kubernetes/ssl/ca.pem \ --peer-trusted-ca-file=/etc/kubernetes/ssl/ca.pem \ --initial-advertise-peer-urls ${ETCD_INITIAL_ADVERTISE_PEER_URLS} \ --listen-peer-urls ${ETCD_LISTEN_PEER_URLS} \ --listen-client-urls ${ETCD_LISTEN_CLIENT_URLS},http://127.0.0.1:2379 \ --advertise-client-urls ${ETCD_ADVERTISE_CLIENT_URLS} \ --initial-cluster-token ${ETCD_INITIAL_CLUSTER_TOKEN} \ --initial-cluster infra1=https://192.168.223.201:2380,infra2=https://192.168.223.202:2380,infra3=https://192.168.223.203:2380 \ --initial-cluster-state new \ --data-dir=${ETCD_DATA_DIR} Restart=on-failure RestartSec=5 LimitNOFILE=65536 [Install] WantedBy=multi-user.target
  • 指定 etcd 的工作目录为 /var/lib/etcd,数据目录为 /var/lib/etcd,需在启动服务前创建这个目录 mkdir -p /var/lib/etcd,否则启动服务的时候会报错“Failed at step CHDIR spawning /usr/bin/etcd: No such file or directory”;
  • 为了保证通信安全,需要指定 etcd 的公私钥(cert-file和key-file)、Peers 通信的公私钥和 CA 证书(peer-cert-file、peer-key-file、peer-trusted-ca-file)、客户端的CA证书(trusted-ca-file);
  • 创建 kubernetes.pem 证书时使用的 kubernetes-csr.json 文件的 hosts 字段包含所有 etcd 节点的IP,否则证书校验会出错;
  • --initial-cluster-state 值为 new 时,--name 的参数值必须位于 --initial-cluster 列表中;

环境变量配置文件 vi /etc/etcd/etcd.conf

  1. # [member]
  2. ETCD_NAME=infra1
  3. ETCD_DATA_DIR="/var/lib/etcd"
  4. ETCD_LISTEN_PEER_URLS="https://192.168.223.201:2380" ETCD_LISTEN_CLIENT_URLS="https://192.168.223.201:2379" #[cluster] ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.223.201:2380" ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster" ETCD_ADVERTISE_CLIENT_URLS="https://192.168.223.201:2379"

这是192.168.223.201节点的配置,其他两个etcd节点只要将上面的IP地址改成相应节点的IP地址即可。ETCD_NAME换成对应节点的infra1/2/3。

启动 etcd 服务

  1. systemctl daemon-reload
  2. systemctl enable etcd
  3. systemctl start etcd
  4. systemctl status etcd

在所有的 kubernetes master 节点重复上面的步骤,直到所有机器的 etcd 服务都已启动。

验证服务

  1. etcdctl \
  2. --ca-file=/etc/kubernetes/ssl/ca.pem \
  3. --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ cluster-health member 9a2ec640d25672e5 is healthy: got healthy result from https://192.168.223.201:2379 member bc6f27ae3be34308 is healthy: got healthy result from https://192.168.223.202:2379 member e5c92ea26c4edba0 is healthy: got healthy result from https://192.168.223.203:2379 cluster is healthy

结果最后一行为 cluster is healthy 时表示集群服务正常。

五、部署 haproxy+keepalived

本次部署一个三节点高可用 haproxy+keepalived 集群,分别为:192.168.223.201、192.168.223.202、192.168.223.203。VIP 地址 192.168.223.200

安装 haproxy+keepalived

yum install -y haproxy keepalived

注: 3台 haproxy+keepalived 节点都需安装

配置 keepalived

节点1 192.168.223.201 配置文件 vi /etc/keepalived/keepalived.conf

  1. ! Configuration File for keepalived
  2. global_defs {
  3. notification_email {
  4. test@sina.com
  5. }
  6. notification_email_from admin@test.com
  7. smtp_server 127.0.0.1
  8. smtp_connect_timeout 30
  9. router_id LVS_MASTER
  10. }
  11. vrrp_script check_haproxy {
  12. script "/etc/keepalived/check_haproxy.sh"
  13. interval 3
  14. }
  15. vrrp_instance VI_1 {
  16. state MASTER # 如果配置主从,从服务器改为BACKUP即可 interface ens33 virtual_router_id 60 priority 100 # 从服务器设置小于100的数即可 advert_int 1 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 192.168.223.200/24 } track_script { check_haproxy } }

节点2 192.168.223.202 配置文件 vi /etc/keepalived/keepalived.conf

  1. ! Configuration File for keepalived
  2. global_defs {
  3. notification_email {
  4. test@sina.com
  5. }
  6. notification_email_from admin@test.com
  7. smtp_server 127.0.0.1
  8. smtp_connect_timeout 30
  9. router_id LVS_MASTER
  10. }
  11. vrrp_script check_haproxy {
  12. script "/etc/keepalived/check_haproxy.sh"
  13. interval 3
  14. }
  15. vrrp_instance VI_1 {
  16. state BACKUP # 如果配置主从,从服务器改为BACKUP即可 interface ens33 virtual_router_id 60 priority 90 # 从服务器设置小于100的数即可 advert_int 1 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 192.168.223.200/24 } track_script { check_haproxy } }

节点3 192.168.223.203 配置文件 vi /etc/keepalived/keepalived.conf

  1. ! Configuration File for keepalived
  2. global_defs {
  3. notification_email {
  4. test@sina.com
  5. }
  6. notification_email_from admin@test.com
  7. smtp_server 127.0.0.1
  8. smtp_connect_timeout 30
  9. router_id LVS_MASTER
  10. }
  11. vrrp_script check_haproxy {
  12. script "/etc/keepalived/check_haproxy.sh"
  13. interval 3
  14. }
  15. vrrp_instance VI_1 {
  16. state BACKUP # 如果配置主从,从服务器改为BACKUP即可 interface ens33 virtual_router_id 60 priority 80 # 从服务器设置小于100的数即可 advert_int 1 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 192.168.223.200/24 } track_script { check_haproxy } }

检测脚本 vi /etc/keepalived/check_haproxy.sh

  1. #!/bin/bash
  2. flag=$(systemctl status haproxy &> /dev/null;echo $?)
  3. if [[ $flag != 0 ]];then echo "haproxy is down,close the keepalived" systemctl stop keepalived fi

修改keepalived启动文件 vi /usr/lib/systemd/system/keepalived.service 以下部分:

  1. [Unit]
  2. Description=LVS and VRRP High Availability Monitor
  3. After=syslog.target network-online.target haproxy.service
  4. Requires=haproxy.service
  • keepalived配置文件三台主机基本一样,除了state,主节点配置为MASTER,备节点配置BACKUP,优化级参数priority,主节点设置最高,备节点依次递减
  • 自定义的检测脚本作用是检测本机haproxy服务状态,如果不正常就停止本机keepalived,释放VIP
  • 这里没有考虑keepalived脑裂的问题,后期可以在脚本中加入相关检测

配置 haproxy

3台节点配置一模一样 配置文件 vim /etc/haproxy/haproxy.cfg

  1. global
  2. log 127.0.0.1 local2
  3. chroot /var/lib/haproxy
  4. pidfile /var/run/haproxy.pid
  5. maxconn 4000
  6. user haproxy
  7. group haproxy
  8. daemon
  9. stats socket /var/lib/haproxy/stats
  10. defaults
  11. mode tcp
  12. log global
  13. option tcplog
  14. option dontlognull
  15. option redispatch
  16. retries 3
  17. timeout queue 1m
  18. timeout connect 10s
  19. timeout client 1m
  20. timeout server 1m timeout check 10s maxconn 3000 listen stats mode http bind :10086 stats enable stats uri /admin?stats stats auth admin:admin stats admin if TRUE frontend k8s_http *:8080 mode tcp maxconn 2000 default_backend http_sri backend http_sri balance roundrobin server s1 192.168.223.204:8080 check inter 10000 fall 2 rise 2 weight 1 server s2 192.168.223.205:8080 check inter 10000 fall 2 rise 2 weight 1 frontend k8s_https *:6443 mode tcp maxconn 2000 default_backend https_sri backend https_sri balance roundrobin server s1 192.168.223.204:6443 check inter 10000 fall 2 rise 2 weight 1 server s2 192.168.223.205:6443 check inter 10000 fall 2 rise 2 weight 1
  • listen stats定义了haproxy自身状态查看地址,在里面可以看到haproy目前的各种状态
  • frontend 定义了前端提供服务的端口等信息
  • backend 定义了后端真实服务器的信息

启动 haproxy+keepalived

3个节点都启动

  1. systemctl daemon-reload
  2. systemctl enable haproxy
  3. systemctl enable keepalived
  4. systemctl start haproxy
  5. systemctl start keepalived

如果没有什么报错,那应该就可以在主节点 192.168.223.201 上面看到ens33网卡已绑定VIP: 192.168.223.200

  1. ip a
  2. 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:0c:29:2b:74:46 brd ff:ff:ff:ff:ff:ff inet 192.168.223.201/24 brd 192.168.223.255 scope global ens33 valid_lft forever preferred_lft forever inet 192.168.223.200/24 scope global secondary ens33 valid_lft forever preferred_lft forever inet6 fe80::435e:5e98:6d14:6c40/64 scope link valid_lft forever preferred_lft forever

六、安装 flannel 网络插件

所有的 node 节点都需要安装网络插件才能让所有的Pod加入到同一个局域网中,如果想要在master节点上也能访问 pods的ip,master 节点也安装。

安装 flannel

建议直接使用 yum 安装 flanneld ,除非对版本有特殊需求,默认安装的是0.7.1版本的 flannel 。

yum install -y flannel

service配置文件 vi /usr/lib/systemd/system/flanneld.service

  1. [Unit]
  2. Description=Flanneld overlay address etcd agent
  3. After=network.target
  4. After=network-online.target
  5. Wants=network-online.target After=etcd.service Before=docker.service [Service] Type=notify EnvironmentFile=/etc/sysconfig/flanneld EnvironmentFile=-/etc/sysconfig/docker-network ExecStart=/usr/bin/flanneld-start \ -etcd-endpoints=${FLANNEL_ETCD_ENDPOINTS} \ -etcd-prefix=${FLANNEL_ETCD_PREFIX} \ $FLANNEL_OPTIONS ExecStartPost=/usr/libexec/flannel/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker Restart=on-failure [Install] WantedBy=multi-user.target RequiredBy=docker.service

vi /etc/sysconfig/flanneld 配置文件:

  1. # Flanneld configuration options
  2. # etcd url location. Point this to the server where etcd runs
  3. FLANNEL_ETCD_ENDPOINTS="https://192.168.223.201:2379,https://192.168.223.202:2379,https://192.168.223.203:2379"
  4. # etcd config key. This is the configuration key that flannel queries # For address range assignment FLANNEL_ETCD_PREFIX="/kube-centos/network" # Any additional options that you want to pass FLANNEL_OPTIONS="-etcd-cafile=/etc/kubernetes/ssl/ca.pem -etcd-certfile=/etc/kubernetes/ssl/kubernetes.pem -etcd-keyfile=/etc/kubernetes/ssl/kubernetes-key.pem"

注: 如果是主机是多网卡,则需要在FLANNEL_OPTIONS中增加指定的外网出口的网卡,例如-iface=eth2

在etcd中创建网络配置

执行下面的命令为docker分配IP地址段。

  1. etcdctl --endpoints=https://192.168.223.201:2379,https://192.168.223.202:2379,https://192.168.223.203:2379 \
  2. --ca-file=/etc/kubernetes/ssl/ca.pem \
  3. --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ mkdir /kube-centos/network etcdctl --endpoints=https://192.168.223.201:2379,https://192.168.223.202:2379,https://192.168.223.203:2379 \ --ca-file=/etc/kubernetes/ssl/ca.pem \ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ mk /kube-centos/network/config '{"Network":"172.30.0.0/16","SubnetLen":24,"Backend":{"Type":"vxlan"}}'

如果你要使用host-gw模式,可以直接将vxlan改成host-gw即可。根据原作者测试,使用host-gw模式时网络性能好一些。

启动flannel服务

  1. systemctl daemon-reload
  2. systemctl enable flanneld
  3. systemctl start flanneld
  4. systemctl status flanneld

注: 启动flannel前,请先停止docker,flannel启动好后,再启动docker。

现在查询etcd中的内容可以看到:

  1. etcdctl --endpoints=${ETCD_ENDPOINTS} \
  2. --ca-file=/etc/kubernetes/ssl/ca.pem \
  3. --cert-file=/etc/kubernetes/ssl/kubernetes.pem \
  4. --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ ls /kube-centos/network/subnets /kube-centos/network/subnets/172.30.14.0-24 /kube-centos/network/subnets/172.30.38.0-24 /kube-centos/network/subnets/172.30.46.0-24 /kube-centos/network/subnets/172.30.91.0-24 etcdctl --endpoints=${ETCD_ENDPOINTS} \ --ca-file=/etc/kubernetes/ssl/ca.pem \ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ get /kube-centos/network/config { "Network": "172.30.0.0/16", "SubnetLen": 24, "Backend": { "Type": "vxlan" } } etcdctl --endpoints=${ETCD_ENDPOINTS} \ --ca-file=/etc/kubernetes/ssl/ca.pem \ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ get /kube-centos/network/subnets/172.30.14.0-24 {"PublicIP":"192.168.223.204","BackendType":"vxlan","BackendData":{"VtepMAC":"56:27:7d:1c:08:22"}} etcdctl --endpoints=${ETCD_ENDPOINTS} \ --ca-file=/etc/kubernetes/ssl/ca.pem \ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ get /kube-centos/network/subnets/172.30.38.0-24 {"PublicIP":"192.168.223.205","BackendType":"vxlan","BackendData":{"VtepMAC":"12:82:83:59:cf:b8"}} etcdctl --endpoints=${ETCD_ENDPOINTS} \ --ca-file=/etc/kubernetes/ssl/ca.pem \ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ get /kube-centos/network/subnets/172.30.46.0-24 {"PublicIP":"192.168.223.206","BackendType":"vxlan","BackendData":{"VtepMAC":"e6:b2:fd:f6:66:96"}} etcdctl --endpoints=${ETCD_ENDPOINTS} \ --ca-file=/etc/kubernetes/ssl/ca.pem \ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \ get /kube-centos/network/subnets/172.30.91.0-24 {"PublicIP":"192.168.223.207","BackendType":"vxlan","BackendData":{"VtepMAC":"e3:b1:43:f6:34:67"}}

如果可以查看到以上内容证明flannel已经安装完成,并且已经正常分配kubernetes网段

七、部署master节点

kubernetes master 节点包含的组件:

  • kube-apiserver
  • kube-scheduler
  • kube-controller-manager
  • kube-scheduler、kube-controller-manager 和 kube-apiserver 三者的功能紧密相关;
  • 同时只能有一个 kube-scheduler、kube-controller-manager 进程处于工作状态,如果运行多个,则需要通过选举产生一个 leader;
  • kube-apiserver 为无状态服务,使用haproxy+keepalived 实现高可用

TLS 证书文件

以下pem证书文件我们在创建TLS证书和秘钥这一步中已经创建过了,token.csv文件在创建kubeconfig文件的时候创建。我们再检查一下。

  1. cd /etc/kubernetes/ssl
  2. ls
  3. admin-key.pem admin.pem ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem kubernetes-key.pem kubernetes.pem

下载二进制文件

有两种下载方式,请注意下载对应的Kubernetes版本。

方式一

从 github release 页面 下载发布版 tarball,解压后再执行下载脚本

wget https://github.com/kubernetes/kubernetes/releases/download/v1.6.0/kubernetes.tar.gz tar -xzvf kubernetes.tar.gz cd kubernetes ./cluster/get-kube-binaries.sh 

方式二

从 CHANGELOG页面 下载 client 或 server tarball 文件 server 的 tarball kubernetes-server-linux-amd64.tar.gz 已经包含了 client(kubectl) 二进制文件,所以不用单独下载kubernetes-client-linux-amd64.tar.gz文件;

  1. # wget https://dl.k8s.io/v1.6.0/kubernetes-client-linux-amd64.tar.gz
  2. wget https://dl.k8s.io/v1.6.0/kubernetes-server-linux-amd64.tar.gz
  3. tar -xzvf kubernetes-server-linux-amd64.tar.gz
  4. cp -r kubernetes/server/bin/{kube-apiserver,kube-controller-manager,kube-scheduler,kubectl,kube-proxy,kubelet} /usr/bin/ chmod +x /usr/bin/kube*

配置和启动 kube-apiserver

创建 kube-apiserver的service配置文件

service配置文件 vi /usr/lib/systemd/system/kube-apiserver.service内容:

  1. [Unit]
  2. Description=Kubernetes API Service
  3. Documentation=https://github.com/GoogleCloudPlatform/kubernetes
  4. After=network.target
  5. After=etcd.service [Service] EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/apiserver ExecStart=/usr/bin/kube-apiserver \ $KUBE_LOGTOSTDERR \ $KUBE_LOG_LEVEL \ $KUBE_ETCD_SERVERS \ $KUBE_API_ADDRESS \ $KUBE_API_PORT \ $KUBELET_PORT \ $KUBE_ALLOW_PRIV \ $KUBE_SERVICE_ADDRESSES \ $KUBE_ADMISSION_CONTROL \ $KUBE_API_ARGS Restart=on-failure Type=notify LimitNOFILE=65536 [Install] WantedBy=multi-user.target

vi /etc/kubernetes/config 文件的内容为:

  1. ###
  2. # kubernetes system config
  3. #
  4. # The following values are used to configure various aspects of all
  5. # kubernetes services, including # # kube-apiserver.service # kube-controller-manager.service # kube-scheduler.service # kubelet.service # kube-proxy.service # logging to stderr means we get it in the systemd journal KUBE_LOGTOSTDERR="--logtostderr=true" # journal message level, 0 is debug KUBE_LOG_LEVEL="--v=0" # Should this cluster be allowed to run privileged docker containers KUBE_ALLOW_PRIV="--allow-privileged=true" # How the controller-manager, scheduler, and proxy find the apiserver #KUBE_MASTER="--master=http://sz-pg-oam-docker-test-001.tendcloud.com:8080" KUBE_MASTER="--master=http://192.168.223.200:8080"

注: 该配置文件同时被kube-apiserver、kube-controller-manager、kube-scheduler、kubelet、kube-proxy使用。KUBE_MASTER 填写 VIP 地址

apiserver配置文件 vi /etc/kubernetes/apiserver 内容为:

  1. ###
  2. ## kubernetes system config ## ## The following values are used to configure the kube-apiserver ## # ## The address on the local server to listen to. #KUBE_API_ADDRESS="--insecure-bind-address=sz-pg-oam-docker-test-001.tendcloud.com" KUBE_API_ADDRESS="--advertise-address=0.0.0.0 --bind-address=0.0.0.0 --insecure-bind-address=0.0.0.0" # ## The port on the local server to listen on. #KUBE_API_PORT="--port=8080" # ## Port minions listen on #KUBELET_PORT="--kubelet-port=10250" # ## Comma separated list of nodes in the etcd cluster KUBE_ETCD_SERVERS="--etcd-servers=https://192.168.223.201:2379,https://192.168.223.202:2379,https://192.168.223.203:2379" # ## Address range to use for services KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16" # ## default admission control policies KUBE_ADMISSION_CONTROL="--admission-control=ServiceAccount,NamespaceLifecycle,NamespaceExists,LimitRanger,ResourceQuota" # ## Add your own! KUBE_API_ARGS="--authorization-mode=RBAC --runtime-config=rbac.authorization.k8s.io/v1beta1 --kubelet-https=true --experimental-bootstrap-token-auth --token-auth-file=/etc/kubernetes/token.csv --service-node-port-range=30000-32767 --tls-cert-file=/etc/kubernetes/ssl/kubernetes.pem --tls-private-key-file=/etc/kubernetes/ssl/kubernetes-key.pem --client-ca-file=/etc/kubernetes/ssl/ca.pem --service-account-key-file=/etc/kubernetes/ssl/ca-key.pem --etcd-cafile=/etc/kubernetes/ssl/ca.pem --etcd-certfile=/etc/kubernetes/ssl/kubernetes.pem --etcd-keyfile=/etc/kubernetes/ssl/kubernetes-key.pem --enable-swagger-ui=true --apiserver-count=3 --audit-log-maxage=30 --audit-log-maxbackup=3 --audit-log-maxsize=100 --audit-log-path=/var/lib/audit.log --event-ttl=1h"
  • --experimental-bootstrap-token-auth Bootstrap Token Authentication在1.9版本已经变成了正式feature,参数名称改为--enable-bootstrap-token-auth
  • 如果中途修改过--service-cluster-ip-range地址,则必须将default命名空间的kubernetes的service给删除,使用命令:kubectl delete service kubernetes,然后系统会自动用新的ip重建这个service,不然apiserver的log有报错the cluster IP x.x.x.x for service kubernetes/default is not within the service CIDR x.x.x.x/16; please recreate
  • --authorization-mode=RBAC 指定在安全端口使用 RBAC 授权模式,拒绝未通过授权的请求;
  • kube-scheduler、kube-controller-manager 一般和 kube-apiserver 部署在同一台机器上,它们使用非安全端口和 kube-apiserver通信;
  • kubelet、kube-proxy、kubectl 部署在其它 Node 节点上,如果通过安全端口访问 kube-apiserver,则必须先通过 TLS 证书认证,再通过 RBAC 授权;
  • kube-proxy、kubectl 通过在使用的证书里指定相关的 User、Group 来达到通过 RBAC 授权的目的;
  • 如果使用了 kubelet TLS Boostrap 机制,则不能再指定 --kubelet-certificate-authority、--kubelet-client-certificate 和 --kubelet-client-key 选项,否则后续 kube-apiserver 校验 kubelet 证书时出现 ”x509: certificate signed by unknown authority“ 错误;
  • --admission-control 值必须包含 ServiceAccount;
  • runtime-config配置为rbac.authorization.k8s.io/v1beta1,表示运行时的apiVersion;
  • --service-cluster-ip-range 指定 Service Cluster IP 地址段,该地址段不能路由可达;
  • 缺省情况下 kubernetes 对象保存在 etcd /registry 路径下,可以通过 --etcd-prefix 参数进行调整;
  • 如果需要开通http的无认证的接口,则可以增加以下两个参数:--insecure-port=8080 --insecure-bind-address=0.0.0.0。

Kubernetes 1.9不同点

  • 对于Kubernetes1.9集群,需要注意配置KUBE_API_ARGS环境变量中的--authorization-mode=Node,RBAC,增加对Node授权的模式,否则将无法注册node。
  • --experimental-bootstrap-token-auth Bootstrap Token Authentication在kubernetes 1.9版本已经废弃,参数名称改为--enable-bootstrap-token-auth

启动kube-apiserver

  1. systemctl daemon-reload
  2. systemctl enable kube-apiserver
  3. systemctl start kube-apiserver
  4. systemctl status kube-apiserver

配置和启动 kube-controller-manager

创建 kube-controller-manager的serivce配置文件

文件路径 vi /usr/lib/systemd/system/kube-controller-manager.service

  1. [Unit]
  2. Description=Kubernetes Controller Manager
  3. Documentation=https://github.com/GoogleCloudPlatform/kubernetes
  4. [Service]
  5. EnvironmentFile=-/etc/kubernetes/config
  6. EnvironmentFile=-/etc/kubernetes/controller-manager
  7. ExecStart=/usr/bin/kube-controller-manager \ $KUBE_LOGTOSTDERR \ $KUBE_LOG_LEVEL \ $KUBE_MASTER \ $KUBE_CONTROLLER_MANAGER_ARGS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target

配置文件 vi /etc/kubernetes/controller-manager

  1. ###
  2. # The following values are used to configure the kubernetes controller-manager
  3. # defaults from config and apiserver should be adequate
  4. # Add your own!
  5. KUBE_CONTROLLER_MANAGER_ARGS="--address=127.0.0.1 --service-cluster-ip-range=10.254.0.0/16 --cluster-name=kubernetes --cluster-signing-cert-file=/etc/kubernetes/ssl/ca.pem --cluster-signing-key-file=/etc/kubernetes/ssl/ca-key.pem --service-account-private-key-file=/etc/kubernetes/ssl/ca-key.pem --root-ca-file=/etc/kubernetes/ssl/ca.pem --leader-elect=true"
  • --service-cluster-ip-range 参数指定 Cluster 中 Service 的CIDR范围,该网络在各 Node 间必须路由不可达,必须和 kube-apiserver 中的参数一致;
  • --cluster-signing-* 指定的证书和私钥文件用来签名为 TLS BootStrap 创建的证书和私钥;
  • --root-ca-file 用来对 kube-apiserver 证书进行校验,指定该参数后,才会在Pod 容器的 ServiceAccount 中放置该 CA 证书文件;
  • --address 值必须为 127.0.0.1,kube-apiserver 期望 scheduler 和 controller-manager 在同一台机器;

启动 kube-controller-manager

  1. systemctl daemon-reload
  2. systemctl enable kube-controller-manager
  3. systemctl start kube-controller-manager
  4. systemctl status kube-controller-manager

我们启动每个组件后可以通过执行命令 kubectl get componentstatuses,来查看各个组件的状态;

  1. kubectl get componentstatuses
  2. NAME STATUS MESSAGE ERROR
  3. scheduler Unhealthy Get http://127.0.0.1:10251/healthz: dial tcp 127.0.0.1:10251: getsockopt: connection refused
  4. controller-manager Healthy ok
  5. etcd-2 Healthy {"health": "true"}
  6. etcd-0 Healthy {"health": "true"} etcd-1 Healthy {"health": "true"}

注: 目前scheduler未启动,报错是正常的

配置和启动 kube-scheduler

创建 kube-scheduler的serivce配置文件

文件路径 vi /usr/lib/systemd/system/kube-scheduler.service

  1. [Unit]
  2. Description=Kubernetes Scheduler Plugin
  3. Documentation=https://github.com/GoogleCloudPlatform/kubernetes
  4. [Service]
  5. EnvironmentFile=-/etc/kubernetes/config
  6. EnvironmentFile=-/etc/kubernetes/scheduler ExecStart=/usr/bin/kube-scheduler \ $KUBE_LOGTOSTDERR \ $KUBE_LOG_LEVEL \ $KUBE_MASTER \ $KUBE_SCHEDULER_ARGS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target

配置文件 vi /etc/kubernetes/scheduler

  1. ###
  2. # kubernetes scheduler config
  3. # default config should be adequate
  4. # Add your own!
  5. KUBE_SCHEDULER_ARGS="--leader-elect=true --address=127.0.0.1"
  • --address 值必须为 127.0.0.1,因为当前 kube-apiserver 期望 scheduler 和 controller-manager 在同一台机器;

启动 kube-scheduler

  1. systemctl daemon-reload
  2. systemctl enable kube-scheduler
  3. systemctl start kube-scheduler
  4. systemctl status kube-scheduler

验证 master 节点功能

  1. kubectl get componentstatuses
  2. NAME STATUS MESSAGE ERROR
  3. scheduler Healthy ok
  4. controller-manager Healthy ok
  5. etcd-0 Healthy {"health": "true"} etcd-1 Healthy {"health": "true"} etcd-2 Healthy {"health": "true"}

注: 两个master节点安装方式与配置一样

八、部署node节点

Kubernetes node节点包含如下组件:

  • Flanneld:参考我之前写的文章Kubernetes基于Flannel的网络配置,之前没有配置TLS,现在需要在service配置文件中增加TLS配置,安装过程请参考上一节安装flannel网络插件。
  • Docker1.12.5:docker的安装很简单,这里也不说了,但是需要注意docker的配置。
  • kubelet:直接用二进制文件安装
  • kube-proxy:直接用二进制文件安装

注意: 每台 node 上都需要安装 flannel,master 节点上选装。

步骤简介

  1. 确认在上一步中我们安装配置的网络插件flannel已启动且运行正常
  2. 安装配置docker后启动
  3. 安装配置kubelet、kube-proxy后启动
  4. 验证

目录和文件

我们再检查一下三个节点上,经过前几步操作我们已经创建了如下的证书和配置文件。

  1. cd /etc/kubernetes/ssl
  2. ls
  3. admin-key.pem admin.pem ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem kubernetes-key.pem kubernetes.pem
  4. ls /etc/kubernetes/
  5. apiserver bootstrap.kubeconfig config controller-manager kubelet kube-proxy.kubeconfig proxy scheduler ssl token.csv

安装配置Docker

如果您使用yum的方式安装的flannel则不需要执行mk-docker-opts.sh文件这一步,参考Flannel官方文档中的Docker Integration。

如果你不是使用yum安装的flannel,那么需要下载flannel github release中的tar包,解压后会获得一个 mk-docker-opts.sh 文件,到flannel release页面下载对应版本的安装包,该脚本见mk-docker-opts.sh,因为我们使用yum安装所以不需要执行这一步。这个文件是用来 Generate Docker daemon options based on flannel env file。 使用systemctl命令启动flanneld后,会自动执行./mk-docker-opts.sh -i生成如下两个文件环境变量文件:

  • /run/flannel/subnet.env
  1. FLANNEL_NETWORK=172.30.0.0/16
  2. FLANNEL_SUBNET=172.30.46.1/24 FLANNEL_MTU=1450 FLANNEL_IPMASQ=false
  • /run/docker_opts.env
  1. DOCKER_OPT_BIP="--bip=172.30.46.1/24"
  2. DOCKER_OPT_IPMASQ="--ip-masq=true"
  3. DOCKER_OPT_MTU="--mtu=1450"

Docker将会读取这两个环境变量文件作为容器启动参数。

注意: 安装docker-ce-17.12.1.ce版本的rpm包时,需给docker.service额外添加$DOCKER_NETWORK_OPTIONS --exec-opt native.cgroupdriver=systemd

ExecStart=/usr/bin/dockerd $DOCKER_NETWORK_OPTIONS --exec-opt native.cgroupdriver=systemd

注意: 不论您用什么方式安装的flannel,下面这一步是必不可少的。

yum方式安装的flannel

修改docker的配置文件 vi /usr/lib/systemd/system/docker.service,增加一条环境变量配置

EnvironmentFile=-/run/flannel/docker

/run/flannel/docker文件是flannel启动后自动生成的,其中包含了docker启动时需要的参数。

二进制方式安装的flannel

修改docker的配置文件 vi /usr/lib/systemd/system/docker.service,增加如下几条环境变量配置:

  1. EnvironmentFile=-/run/docker_opts.env
  2. EnvironmentFile=-/run/flannel/subnet.env

这两个文件是mk-docker-opts.sh脚本生成环境变量文件默认的保存位置,docker启动的时候需要加载这几个配置文件才可以加入到flannel创建的虚拟网络里。

所以不论您使用何种方式安装的flannel,将以下配置加入到docker.service中可确保万无一失。

  1. EnvironmentFile=-/run/flannel/docker
  2. EnvironmentFile=-/run/docker_opts.env
  3. EnvironmentFile=-/run/flannel/subnet.env
  4. EnvironmentFile=-/etc/sysconfig/docker
  5. EnvironmentFile=-/etc/sysconfig/docker-storage EnvironmentFile=-/etc/sysconfig/docker-network EnvironmentFile=-/run/docker_opts.env

docker安装方式也分yum和rpm包安装

方式一: yum 安装

版本1.13.1-53

yum install docker -y

然后修改配置 vi /etc/sysconfig/docker 中OPTIONS参数如下:

  1. OPTIONS='--log-driver=json-file --signature-verification=false --insecure-registry 192.168.223.208:80'
  2. # 附:192.168.223.208:80 为harbor私有镜像仓库

修改 vi /etc/sysconfig/docker-storage 如下:

DOCKER_STORAGE_OPTIONS="--storage-driver overlay "

修改docker pull源 vi /etc/docker/daemon.json

  1. {
  2. "registry-mirrors":["https://registry.docker-cn.com"]
  3. }

修改 vi /usr/lib/systemd/system/docker.service:

  1. [Unit]
  2. Description=Docker Application Container Engine
  3. Documentation=http://docs.docker.com
  4. After=network.target rhel-push-plugin.socket registries.service
  5. Wants=docker-storage-setup.service
  6. Requires=docker-cleanup.timer [Service] Type=notify NotifyAccess=all EnvironmentFile=-/run/containers/registries.conf EnvironmentFile=-/run/docker_opts.env EnvironmentFile=-/etc/sysconfig/docker-network EnvironmentFile=-/etc/sysconfig/docker-storage EnvironmentFile=-/etc/sysconfig/docker EnvironmentFile=-/run/flannel/subnet.env EnvironmentFile=-/run/docker_opts.env EnvironmentFile=-/run/flannel/docker Environment=GOTRACEBACK=crash Environment=DOCKER_HTTP_HOST_COMPAT=1 Environment=PATH=/usr/libexec/docker:/usr/bin:/usr/sbin ExecStart=/usr/bin/dockerd-current \ --add-runtime docker-runc=/usr/libexec/docker/docker-runc-current \ --default-runtime=docker-runc \ --exec-opt native.cgroupdriver=systemd \ --userland-proxy-path=/usr/libexec/docker/docker-proxy-current \ --seccomp-profile=/etc/docker/seccomp.json \ $OPTIONS \ $DOCKER_STORAGE_OPTIONS \ $DOCKER_NETWORK_OPTIONS \ $ADD_REGISTRY \ $BLOCK_REGISTRY \ $INSECURE_REGISTRY \ $REGISTRIES ExecReload=/bin/kill -s HUP $MAINPID LimitNOFILE=1048576 LimitNPROC=1048576 LimitCORE=infinity TimeoutStartSec=0 Restart=on-abnormal MountFlags=slave KillMode=process [Install] WantedBy=multi-user.target

方式二: rpm安装

版本:ce-17.12.1

rpm -ivh docker-ce-17.12.1.ce-1.el7.centos.x86_64.rpm 

然后修改配置 vi /etc/sysconfig/docker 中OPTIONS参数如下:

  1. # /etc/sysconfig/docker
  2. # Modify these options if you want to change the way the docker daemon runs OPTIONS='--log-driver=json-file --insecure-registry 192.168.223.208:80' # 附:192.168.223.208:80 为harbor私有镜像仓库,-signature-verification=false选项在此版本已不存在 if [ -z "${DOCKER_CERT_PATH}" ]; then DOCKER_CERT_PATH=/etc/docker fi # Do not add registries in this file anymore. Use /etc/containers/registries.conf # from the atomic-registries package. # # On an SELinux system, if you remove the --selinux-enabled option, you # also need to turn on the docker_transition_unconfined boolean. # setsebool -P docker_transition_unconfined 1 # Location used for temporary files, such as those created by # docker load and build operations. Default is /var/lib/docker/tmp # Can be overriden by setting the following environment variable. # DOCKER_TMPDIR=/var/tmp # Controls the /etc/cron.daily/docker-logrotate cron job status. # To disable, uncomment the line below. # LOGROTATE=false # docker-latest daemon can be used by starting the docker-latest unitfile. # To use docker-latest client, uncomment below lines #DOCKERBINARY=/usr/bin/docker-latest #DOCKERDBINARY=/usr/bin/dockerd-latest #DOCKER_CONTAINERD_BINARY=/usr/bin/docker-containerd-latest #DOCKER_CONTAINERD_SHIM_BINARY=/usr/bin/docker-containerd-shim-latest

修改 vi /etc/sysconfig/docker-storage 如下:

DOCKER_STORAGE_OPTIONS="--storage-driver overlay "

修改docker pull源 vi /etc/docker/daemon.json

  1. {
  2. "registry-mirrors":["https://registry.docker-cn.com"]
  3. }

修改 vi /usr/lib/systemd/system/docker.service:

  1. [Unit]
  2. Description=Docker Application Container Engine
  3. Documentation=http://docs.docker.com
  4. After=network-online.target firewalld.service
  5. Wants=network-online.target
  6. [Service]
  7. Type=notify EnvironmentFile=-/etc/sysconfig/docker EnvironmentFile=-/etc/sysconfig/docker-storage EnvironmentFile=-/etc/sysconfig/docker-network EnvironmentFile=-/run/docker_opts.env EnvironmentFile=-/run/flannel/subnet.env EnvironmentFile=-/run/docker_opts.env EnvironmentFile=-/run/flannel/docker Environment=GOTRACEBACK=crash ExecStart=/usr/bin/dockerd $OPTIONS \ --exec-opt native.cgroupdriver=systemd \ $DOCKER_STORAGE_OPTIONS \ $DOCKER_NETWORK_OPTIONS \ $ADD_REGISTRY \ $BLOCK_REGISTRY \ $INSECURE_REGISTRY ExecReload=/bin/kill -s HUP $MAINPID LimitNOFILE=1048576 LimitNPROC=1048576 LimitCORE=infinity MountFlags=slave TimeoutStartSec=1min Delegate=yes KillMode=process Restart=on-failure StartLimitBurst=3 StartLimitInterval=60s [Install] WantedBy=multi-user.target

启动docker

  1. systemctl reload-daemon
  2. systemctl enable docker
  3. systemctl restart docker
  4. systemctl status docker

注: 重启了docker后还要重启kubelet,如果遇到以下问题,kubelet启动失败。报错:

Mar 31 16:44:41 k8s_node1 kubelet[81047]: error: failed to run Kubelet: failed to create kubelet: misconfiguration: kubelet cgroup driver: "cgroupfs" is different from docker cgroup driver: "systemd" 

这是kubelet与docker的cgroup driver不一致导致的,kubelet启动的时候有个—cgroup-driver参数可以指定为"cgroupfs"或者“systemd”。

--cgroup-driver string       Driver that the kubelet uses to manipulate cgroups on the host.  Possible values: 'cgroupfs', 'systemd' (default "cgroupfs") 

配置docker的service配置文件 vi /usr/lib/systemd/system/docker.service,设置ExecStart中的 --exec-opt native.cgroupdriver=systemd 再重启即可。

安装和配置kubelet

kubernets1.8不同点

相对于kubernetes1.6集群必须进行的配置有: 对于kuberentes1.8集群,必须关闭swap,否则kubelet启动将失败。 修改/etc/fstab将,swap系统注释掉。

kubelet 启动时向 kube-apiserver 发送 TLS bootstrapping 请求,需要先将 bootstrap token 文件中的 kubelet-bootstrap 用户赋予 system:node-bootstrapper cluster 角色(role), 然后 kubelet 才能有权限创建认证请求(certificate signing requests):

  1. cd /etc/kubernetes
  2. kubectl create clusterrolebinding kubelet-bootstrap \
  3. --clusterrole=system:node-bootstrapper \
  4. --user=kubelet-bootstrap
  • --user=kubelet-bootstrap 是在 /etc/kubernetes/token.csv 文件中指定的用户名,同时也写入了 /etc/kubernetes/bootstrap.kubeconfig 文件;

下载最新的kubelet和kube-proxy二进制文件

注意请下载对应的Kubernetes版本的安装包。

  1. wget https://dl.k8s.io/v1.6.0/kubernetes-server-linux-amd64.tar.gz
  2. tar -xzvf kubernetes-server-linux-amd64.tar.gz
  3. cp -r kubernetes/server/bin/{kube-proxy,kubelet} /usr/bin/ chmod +x /usr/bin/kube*

创建kubelet的service配置文件

文件位置 vi /usr/lib/systemd/system/kubelet.service

  1. [Unit]
  2. Description=Kubernetes Kubelet Server
  3. Documentation=https://github.com/GoogleCloudPlatform/kubernetes
  4. After=docker.service
  5. Requires=docker.service [Service] WorkingDirectory=/var/lib/kubelet EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/kubelet ExecStart=/usr/bin/kubelet \ $KUBE_LOGTOSTDERR \ $KUBE_LOG_LEVEL \ $KUBELET_API_SERVER \ $KUBELET_ADDRESS \ $KUBELET_PORT \ $KUBELET_HOSTNAME \ $KUBE_ALLOW_PRIV \ $KUBELET_POD_INFRA_CONTAINER \ $KUBELET_ARGS Restart=on-failure [Install] WantedBy=multi-user.target

kubelet的配置文件/etc/kubernetes/kubelet。其中的IP地址更改为你的每台node节点的IP地址。 注意: 在启动kubelet之前,需要先手动创建/var/lib/kubelet目录:mkdir -p /var/lib/kubelet

kubelet的配置文件 vi /etc/kubernetes/kubelet:

kubernetes1.8不同点

相对于kubenrete1.6的配置变动:

  • 对于kuberentes1.8集群中的kubelet配置,取消了KUBELET_API_SERVER的配置,而改用kubeconfig文件来定义master地址,所以请注释掉KUBELET_API_SERVER配置。
  1. ###
  2. ## kubernetes kubelet (minion) config # ## The address for the info server to serve on (set to 0.0.0.0 or "" for all interfaces) KUBELET_ADDRESS="--address=192.168.223.206" # ## The port for the info server to serve on #KUBELET_PORT="--port=10250" # ## You may leave this blank to use the actual hostname KUBELET_HOSTNAME="--hostname-override=192.168.223.206" # ## location of the api-server ## COMMENT THIS ON KUBERNETES 1.8+ KUBELET_API_SERVER="--api-servers=http://192.168.223.200:8080" # ## pod infrastructure container KUBELET_POD_INFRA_CONTAINER="--pod_infra_container_image=192.168.223.208:80/k8s/pause-amd64:v3.0" # ## Add your own! KUBELET_ARGS="--cgroup-driver=systemd --cluster-dns=10.254.0.2 --experimental-bootstrap-kubeconfig=/etc/kubernetes/bootstrap.kubeconfig --kubeconfig=/etc/kubernetes/kubelet.kubeconfig --require-kubeconfig --cert-dir=/etc/kubernetes/ssl --cluster-domain=cluster.local --hairpin-mode promiscuous-bridge --serialize-image-pulls=false"
  • 如果使用systemd方式启动,则需要额外增加两个参数--runtime-cgroups=/systemd/system.slice --kubelet-cgroups=/systemd/system.slice
  • --experimental-bootstrap-kubeconfig 在1.9版本已经变成了--bootstrap-kubeconfig
  • --address 不能设置为 127.0.0.1,否则后续 Pods 访问 kubelet 的 API 接口时会失败,因为 Pods 访问的 127.0.0.1 指向自己而不是 kubelet;
  • 如果设置了 --hostname-override 选项,则 kube-proxy 也需要设置该选项,否则会出现找不到 Node 的情况;
  • "--cgroup-driver 配置成 systemd,不要使用cgroup,否则在 CentOS 系统中 kubelet 将启动失败(保持docker和kubelet中的cgroup driver配置一致即可,不一定非使用systemd)。
  • --experimental-bootstrap-kubeconfig 指向 bootstrap kubeconfig 文件,kubelet 使用该文件中的用户名和 token 向 kube-apiserver 发送 TLS Bootstrapping 请求;
  • 管理员通过了 CSR 请求后,kubelet 自动在 --cert-dir 目录创建证书和私钥文件(kubelet-client.crt 和 kubelet-client.key),然后写入 --kubeconfig 文件;
  • 建议在 --kubeconfig 配置文件中指定 kube-apiserver 地址,如果未指定 --api-servers 选项,则必须指定 --require-kubeconfig 选项后才从配置文件中读取 kube-apiserver 的地址,否则 kubelet 启动后将找不到 kube-apiserver (日志中提示未找到 API Server),kubectl get nodes 不会返回对应的 Node 信息;
  • --cluster-dns 指定 kubedns 的 Service IP(可以先分配,后续创建 kubedns 服务时指定该 IP),--cluster-domain 指定域名后缀,这两个参数同时指定后才会生效;
  • --cluster-domain 指定 pod 启动时 /etc/resolve.conf 文件中的 search domain ,起初我们将其配置成了 cluster.local.,这样在解析 service 的 DNS 名称时是正常的,可是在解析 headless service 中的 FQDN pod name 的时候却错误,因此我们将其修改为 cluster.local,去掉嘴后面的 ”点号“ 就可以解决该问题,关于 kubernetes 中的域名/服务名称解析请参见我的另一篇文章。
  • --kubeconfig=/etc/kubernetes/kubelet.kubeconfig中指定的kubelet.kubeconfig文件在第一次启动kubelet之前并不存在,请看下文,当通过CSR请求后会自动生成kubelet.kubeconfig文件,如果你的节点上已经生成了~/.kube/config文件,你可以将该文件拷贝到该路径下,并重命名为kubelet.kubeconfig,所有node节点可以共用同一个kubelet.kubeconfig文件,这样新添加的节点就不需要再创建CSR请求就能自动添加到kubernetes集群中。同样,在任意能够访问到kubernetes集群的主机上使用kubectl --kubeconfig命令操作集群时,只要使用~/.kube/config文件就可以通过权限认证,因为这里面已经有认证信息并认为你是admin用户,对集群拥有所有权限。
  • KUBELET_POD_INFRA_CONTAINER 是基础pod镜像容器,这里我用的是私有镜像仓库地址,大家部署的时候需要修改为自己的镜像。这里的pod镜像可以使用:pod-infrastructure 或者 pause 。pod-infrastructure镜像是Redhat制作的,大小接近80M,下载比较耗时,其实该镜像并不运行什么具体进程,推荐使用Google的pause镜像gcr.io/google_containers/pause-amd64:3.0,这个镜像只有300多K。

启动kubelet

  1. systemctl daemon-reload
  2. systemctl enable kubelet
  3. systemctl start kubelet
  4. systemctl status kubelet

通过 kublet 的 TLS 证书请求

kubelet 首次启动时向 kube-apiserver 发送证书签名请求,必须通过后 kubernetes 系统才会将该 Node 加入到集群。

查看未授权的 CSR 请求

  1. kubectl get csr
  2. NAME AGE REQUESTOR CONDITION
  3. csr-2b308 4m kubelet-bootstrap Pending
  4. kubectl get nodes
  5. No resources found.

通过 CSR 请求

  1. kubectl certificate approve csr-2b308
  2. certificatesigningrequest "csr-2b308" approved
  3. kubectl get nodes
  4. NAME STATUS AGE VERSION
  5. 192.168.223.206 Ready 1m v1.6.0

自动生成了 kubelet kubeconfig 文件和公私钥

  1. ls -l /etc/kubernetes/kubelet.kubeconfig
  2. -rw------- 1 root root 2284 Apr 7 02:07 /etc/kubernetes/kubelet.kubeconfig
  3. ls -l /etc/kubernetes/ssl/kubelet*
  4. -rw-r--r-- 1 root root 1046 Apr 7 02:07 /etc/kubernetes/ssl/kubelet-client.crt -rw------- 1 root root 227 Apr 7 02:04 /etc/kubernetes/ssl/kubelet-client.key -rw-r--r-- 1 root root 1103 Apr 7 02:07 /etc/kubernetes/ssl/kubelet.crt -rw------- 1 root root 1675 Apr 7 02:07 /etc/kubernetes/ssl/kubelet.key

假如你更新kubernetes的证书,只要没有更新token.csv,当重启kubelet后,该node就会自动加入到kuberentes集群中,而不会重新发送certificaterequest,也不需要在master节点上执行kubectl certificate approve操作。前提是不要删除node节点上的/etc/kubernetes/ssl/kubelet*和/etc/kubernetes/kubelet.kubeconfig文件。否则kubelet启动时会提示找不到证书而失败。

注意: 如果启动kubelet的时候见到证书相关的报错,有个trick可以解决这个问题,可以将master节点上的~/.kube/config文件(该文件在安装kubectl命令行工具这一步中将会自动生成)拷贝到node节点的/etc/kubernetes/kubelet.kubeconfig位置,这样就不需要通过CSR,当kubelet启动后就会自动加入的集群中。

配置 kube-proxy

安装conntrack

yum install -y conntrack-tools

创建 kube-proxy 的service配置文件
文件路径 vi /usr/lib/systemd/system/kube-proxy.service

  1. [Unit]
  2. Description=Kubernetes Kube-Proxy Server
  3. Documentation=https://github.com/GoogleCloudPlatform/kubernetes
  4. After=network.target
  5. [Service]
  6. EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/proxy ExecStart=/usr/bin/kube-proxy \ $KUBE_LOGTOSTDERR \ $KUBE_LOG_LEVEL \ $KUBE_MASTER \ $KUBE_PROXY_ARGS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target

kube-proxy配置文件 vi /etc/kubernetes/proxy

  1. ###
  2. # kubernetes proxy config
  3. # default config should be adequate
  4. # Add your own!
  5. KUBE_PROXY_ARGS="--bind-address=192.168.223.206 --hostname-override=192.168.223.206 --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig --cluster-cidr=10.254.0.0/16"
  • --hostname-override 参数值必须与 kubelet 的值一致,否则 kube-proxy 启动后会找不到该 Node,从而不会创建任何 iptables 规则;
  • kube-proxy 根据 --cluster-cidr 判断集群内部和外部流量,指定 --cluster-cidr 或 --masquerade-all 选项后 kube-proxy 才会对访问 Service IP 的请求做 SNAT;
  • --kubeconfig 指定的配置文件嵌入了 kube-apiserver 的地址、用户名、证书、秘钥等请求和认证信息;
  • 预定义的 RoleBinding cluster-admin 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限;

启动 kube-proxy

  1. systemctl daemon-reload
  2. systemctl enable kube-proxy
  3. systemctl start kube-proxy
  4. systemctl status kube-proxy
  • node2 节点 192.168.223.207 安装方式一样,只需要把相应配置文件里面的IP改为 192.168.223.207 即可
  • 新增节点的话只需要把master节点的证书拷贝到新主机,证书包括: /etc/kubernetes/bootstrap.kubeconfig; /etc/kubernetes/kube-proxy.kubeconfig;/etc/kubernetes/ssl/*.pem ,然后先安装flanneld,后照本章操作加入集群即可。

验证测试

我们创建一个nginx的service试一下集群是否可用

  1. kubectl run nginx --replicas=2 --labels="run=load-balancer-example" --image=192.168.223.208:80/k8s/nginx:v1.9.4 --port=80
  2. deployment "nginx" created
  3. kubectl expose deployment nginx --type=NodePort --name=example-service
  4. service "example-service" exposed
  5. kubectl describe svc example-service
  6. Name: example-service
  7. Namespace: default
  8. Labels: run=load-balancer-example
  9. Annotations: <none>
  10. Selector: run=load-balancer-example
  11. Type: NodePort
  12. IP: 10.254.62.207
  13. Port: <unset> 80/TCP
  14. NodePort: <unset> 32724/TCP Endpoints: 172.30.60.2:80,172.30.94.2:80 Session Affinity: None Events: <none> curl "10.254.62.207:80" <!DOCTYPE html> <html> <head> <title>Welcome to nginx!</title> <style> body { width: 35em; margin: 0 auto; font-family: Tahoma, Verdana, Arial, sans-serif; } </style> </head> <body> <h1>Welcome to nginx!</h1> <p>If you see this page, the nginx web server is successfully installed and working. Further configuration is required.</p> <p>For online documentation and support please refer to <a href="http://nginx.org/">nginx.org</a>.<br/> Commercial support is available at <a href="http://nginx.com/">nginx.com</a>.</p> <p><em>Thank you for using nginx.</em></p> </body> </html>

注意: 此时可能会出现不同node节点上面的pod之间网络不通,解决方法如下

  1. #设置所有节点iptables
  2. yum install iptables-services -y;
  3. systemctl disable iptables; systemctl stop iptables; modprobe ip_tables; iptables -P FORWARD ACCEPT;
  • 上面的测试示例中使用的nginx是我的私有镜像仓库中的镜像 192.168.223.208:80/k8s/nginx:v1.9.4,大家在测试过程中请换成自己的nginx镜像地址。
  • 10.254.62.207 为集群内部地址,只有在安装了kube-proxy的节点上能够访问,访问这个地址时是做了负载均衡的
  • 访问 192.168.223.206:32724 或 192.168.223.207:32724 都可以得到nginx的页面。
  • 删除此测试服务方法:kubectl delete deployment nginx; kubectl delete svc example-service

至此kubernets1.6.0集群基础环境已经安装完成,后面将安装一些常用插件

九、安装kubedns插件

该插件需要使用以下官方镜像:

  1. gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1
  2. gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1 gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1

由于大中华局域网的原因,这些镜像是pull不下来的。所有我这里使用自己搭建的私有镜像仓库

192.168.223.208:80/k8s/k8s-dns-kube-dns-amd64:v1.14.1 192.168.223.208:80/k8s/k8s-dns-dnsmasq-nanny-amd64:v1.14.1 192.168.223.208:80/k8s/k8s-dns-sidecar-amd64:v1.14.1 

需要使用的yaml配置文件

  1. kubedns-cm.yaml
  2. kubedns-sa.yaml
  3. kubedns-controller.yaml
  4. kubedns-svc.yaml

系统预定义的 RoleBinding

预定义的 RoleBinding system:kube-dns 将 kube-system 命名空间的 kube-dns ServiceAccount 与 system:kube-dns Role 绑定, 该 Role 具有访问 kube-apiserver DNS 相关 API 的权限;

kubectl get clusterrolebindings system:kube-dns -o yaml apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata:  annotations: rbac.authorization.kubernetes.io/autoupdate: "true"  creationTimestamp: 2017-04-11T11:20:42Z  labels: kubernetes.io/bootstrapping: rbac-defaults  name: system:kube-dns  resourceVersion: "58"  selfLink: /apis/rbac.authorization.k8s.io/v1beta1/clusterrolebindingssystem%3Akube-dns  uid: e61f4d92-1ea8-11e7-8cd7-f4e9d49f8ed0 roleRef:  apiGroup: rbac.authorization.k8s.io  kind: ClusterRole  name: system:kube-dns subjects: - kind: ServiceAccount  name: kube-dns  namespace: kube-system 
  • kubedns-controller.yaml 中定义的 Pods 时使用了 kubedns-sa.yaml 文件定义的 kube-dns ServiceAccount,所以具有访问 kube-apiserver DNS 相关 API 的权限。

配置 kube-dns ServiceAccount

yaml文件 vi kubedns-sa.yaml

  1. apiVersion: v1
  2. kind: ServiceAccount
  3. metadata:
  4. name: kube-dns
  5. namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile

yaml文件 vi kubedns-cm.yaml

  1. # Copyright 2016 The Kubernetes Authors.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. apiVersion: v1 kind: ConfigMap metadata: name: kube-dns namespace: kube-system labels: addonmanager.kubernetes.io/mode: EnsureExists

配置 kube-dns 服务

yaml文件 vi kubedns-controller.yaml

  1. # Copyright 2016 The Kubernetes Authors.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Should keep target in cluster/addons/dns-horizontal-autoscaler/dns-horizontal-autoscaler.yaml # in sync with this file. # __MACHINE_GENERATED_WARNING__ apiVersion: extensions/v1beta1 kind: Deployment metadata: name: kube-dns namespace: kube-system labels: k8s-app: kube-dns kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile spec: # replicas: not specified here: # 1. In order to make Addon Manager do not reconcile this replicas parameter. # 2. Default is 1. # 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on. strategy: rollingUpdate: maxSurge: 10% maxUnavailable: 0 selector: matchLabels: k8s-app: kube-dns template: metadata: labels: k8s-app: kube-dns annotations: scheduler.alpha.kubernetes.io/critical-pod: '' spec: tolerations: - key: "CriticalAddonsOnly" operator: "Exists" volumes: - name: kube-dns-config configMap: name: kube-dns optional: true containers: - name: kubedns image: 192.168.223.208:80/k8s/k8s-dns-kube-dns-amd64:v1.14.1 resources: # TODO: Set memory limits when we've profiled the container for large # clusters, then set request = limit to keep this container in # guaranteed class. Currently, this container falls into the # "burstable" category so the kubelet doesn't backoff from restarting it. limits: memory: 170Mi requests: cpu: 100m memory: 70Mi livenessProbe: httpGet: path: /healthcheck/kubedns port: 10054 scheme: HTTP initialDelaySeconds: 60 timeoutSeconds: 5 successThreshold: 1 failureThreshold: 5 readinessProbe: httpGet: path: /readiness port: 8081 scheme: HTTP # we poll on pod startup for the Kubernetes master service and # only setup the /readiness HTTP server once that's available. initialDelaySeconds: 3 timeoutSeconds: 5 args: - --domain=cluster.local. - --dns-port=10053 - --config-dir=/kube-dns-config - --v=2 #__PILLAR__FEDERATIONS__DOMAIN__MAP__ env: - name: PROMETHEUS_PORT value: "10055" ports: - containerPort: 10053 name: dns-local protocol: UDP - containerPort: 10053 name: dns-tcp-local protocol: TCP - containerPort: 10055 name: metrics protocol: TCP volumeMounts: - name: kube-dns-config mountPath: /kube-dns-config - name: dnsmasq image: 192.168.223.208:80/k8s/k8s-dns-dnsmasq-nanny-amd64:v1.14.1 livenessProbe: httpGet: path: /healthcheck/dnsmasq port: 10054 scheme: HTTP initialDelaySeconds: 60 timeoutSeconds: 5 successThreshold: 1 failureThreshold: 5 args: - -v=2 - -logtostderr - -configDir=/etc/k8s/dns/dnsmasq-nanny - -restartDnsmasq=true - -- - -k - --cache-size=1000 - --log-facility=- - --server=/cluster.local./127.0.0.1#10053 - --server=/in-addr.arpa/127.0.0.1#10053 - --server=/ip6.arpa/127.0.0.1#10053 ports: - containerPort: 53 name: dns protocol: UDP - containerPort: 53 name: dns-tcp protocol: TCP # see: https://github.com/kubernetes/kubernetes/issues/29055 for details resources: requests: cpu: 150m memory: 20Mi volumeMounts: - name: kube-dns-config mountPath: /etc/k8s/dns/dnsmasq-nanny - name: sidecar image: 192.168.223.208:80/k8s/k8s-dns-sidecar-amd64:v1.14.1

转载于:https://www.cnblogs.com/leffss/p/8784426.html

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号