当前位置:   article > 正文

自监督学习(Self-Supervised Learning)多篇论文解读(上)_rethinking rotation in self-supervised contrastive

rethinking rotation in self-supervised contrastive learning: adaptive positi

自监督学习(Self-Supervised Learning)多篇论文解读(上)

前言

Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题。所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作。

这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自监督学习)。自监督学习的思想非常简单,就是输入的是一堆无监督的数据,但是通过数据本身的结构或者特性,人为构造标签(pretext)出来。有了标签之后,就可以类似监督学习一样进行训练。

今年(2020) Self Supervised Learning (SSL) 的研究来到了新的高峰。

不仅在AAAI 上 LeCun, Bengio 与 Hinton 都对这领域寄与厚望;最近发表的文章也显示 SSL 得到的模型表现在 ImageNet dataset 上逐渐逼近了传统 Supervised
Learning 的表现了。

在这里插入图片描述

近年ResNet-50在ImageNet 上的表现

比较知名的工作有两个,一个是:Unsupervised Visual Representation Learning by Context Prediction (ICCV15),如图一,人为构造图片Patch相对位置预测任务,这篇论文可以看作是self-supervised这一系列方法的最早期paper之一;另一个是:Unsupervised Representation Learning by Predicting Image Rotations (ICLR18),如图二,人为构造图片旋转角度预测任务,这篇论文因为想法极其简单在投稿到ICLR之后受到了极大关注,最终因为实验结果非常全面有效最终被录用。

在这里插入图片描述

在实际应用中(例如业界中已经部署的模型), Self Supervised Learning 未必能直接有效的提升 Performance ,但阅读这些文章还是能得到不少启发。例如我们能对以下 Supervised Learning 问题有更多想法:

·
如果将 Deep Network 学习到有用的信息,人工标记 (Manual-Label) 是必要的吗?

·
数据( Data) 本身带有的信息是否比标记 (Label) 更加丰富?

·
我们能将每张图视为一个类别(Class);甚至每一个 Pixel 都视为一个类别吗?

以上问题可能有点天马行空,如果在实际应用上我们能思考:

·
在Representation Learning 中,如何能等价的增大 Batch Size?如何能维持 Embedding Space 的稳定性?

·
在Deep Network 一定是最后一层具有最丰富的 Representation 吗?

·
听说Deep Network 的Capacity 很强大 ,但时至今日,我们是否已经达到 Model 能负荷的上限?(例如ResNet-50有 24M 个参数,号称拥有 ‘大数据’ 的人们,是否已经触碰到
Effective Upper-Bound of ResNet-50’s Model Complexity?)

·
如果Model Complexity 远超乎我们想象,那什么样的 Training Procedure 能最有效率的将信息储存于Deep Network中?

·
Data Augmentation是学习 Deep Learning 一定会接触到的方法,它只是一个方便 Training 的 Trick 呢?还是他对 Network 有特殊意义?

这些问题目前没人能给出确切答案,但在接下来的文章中

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/352563
推荐阅读
相关标签
  

闽ICP备14008679号