赞
踩
作者 | 雪岭飞花 编辑 | 雪岭飞花
点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
本文只做学术分享,如有侵权,联系删文
(华为192线产品还没有途径获取,待获取后,再和大家分享)
2023年,中国车用激光雷达(自主品牌)总出货量约71万台,其中,速腾聚创是24.3万台(2022年是3.69万台)位列第一,禾赛是19.49万台(2022年是6.2万台),图达通大概超15万台,华为预计7万台,另外探维科技、览沃科技等其他大概合计5.21万台。
销量占比如下图所示:
中国是车载激光雷达的主要市场,2023年由于自动驾驶量产车型的增多,激光雷达出货量取得了大幅的增加。
2024年依然会保持增长势头,其中,速腾聚创财报显示,截止到2023年底,速腾聚创已经与22家车企及Tier 1取得定点合作,车型涉及63款。其中有12家车企的24款车型SOP,速腾将2024年的出货量目标定在了100万台。
禾赛科技预计在2024年底实现12家车企的40种车型达成SOP,2024年出货量预计大幅增长至60-70万台。
华为目前的主要客户是问界、阿维塔、极狐、智界、哪吒等,对应车型相关信息如下所示。随着问界等车型的热卖,2024年华为激光雷达的出货量会有大幅提升。
下图汇总了目前主流的激光雷达产品主要性能指标,对比如下所示。
说明:上图数据来源于各公司官网和行业信息,将各产品依据标称的测距和角分辨率在坐标系中进行大致摆放,主要目的在于从特定的角度对部分性能进行对比,这些指标并无法代表激光雷达的全部性能,仅做参考。
从这张图可以看出很多信息,其中:
华为96线激光雷达(型号:D2)距离发布有3年半的时间,从测距和分辨率指标来看,在当前主流产品中已不占优势。
华为192线激光雷达(型号:D3)相对于速腾M1P和禾赛AT128,测距和角分辨率指标相当或者略高,和其他更高性能产品相比,尚有差距。
2020年12月,华为正式发布其首款车规级激光雷达产品——96线中长距激光雷达。
核心参数:
测距:150m@10%;
水平FOV:120°,垂直FOV:25°;
角分辨率:0.25°(H)×0.26°(V)
刷新频率:最高25Hz
阿维塔11上安装了3颗华为96线激光雷达,其中1颗前向,2颗在侧面。
阿维塔的激光雷达有L106和L107两种型号,应该1个是前雷达,1个是侧雷达。这两种型号外形相同,不同点可能是不同安装位置做了微小适配,内部原理应该相同。
本文拆解的是一款型号是L107的激光雷达(右图)。
这款雷达采用较为规整的长方体外形,视窗口是一个矩形平面,和车身配合较为方便。整体外观如下:
尺寸如下,相对于速腾M1P和禾赛AT128,这个雷达的尺寸是比较大的。
拿掉上壳之后的内部结构:
将底壳也去掉之后,核心电路板的连接关系:
连接原理:
整体设计非常紧凑,大量使用软排线进行板间连接,电路板设计也非常规整。
该激光雷达采用转镜进行水平方向上的扫描,有4面反射镜。
电机模组的4个视图:
在靠近激光出入口的位置,合金架涂上了黑色吸波材料,用于吸收多余的激光束杂散和反射,减小干扰。
收发模组是该雷达最复杂的一个结构,原理如下:
为了尽可能的表达清楚,从4个45°角度拍摄了4张照片,标记如下:
发射光路方案:
两个发射板电路完全相同,上面主要是驱动EEL激光发射器:
该雷达每块发射板上有4个EEL,两块发射板一共8个EEL。
EEL后面是准直镜:
通过准直镜后,发射板1的激光由一个反射镜反射后到达分束器,发射板2的激光直接到达分束器。
一共8个EEL光束,由分束器分为96个激光束,然后由棱镜最终调整角度后射出。
接收器主要包括接收镜头、滤光片和SPAD等,由于接收板是用胶粘在支架上,本次拆解并没有打开。下图是来自芝能智芯的拆解图片,显示是一颗来自索尼的SPAD传感器。
图片来源:芝能智芯
该雷达一共有2块主板,由于上面分别有TDA4和FPGA,因此暂时分别命名为TDA4主板和FPGA主板。
TDA4主板
TPS6594-Q1:TI的具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC;
LP8764-Q1:4 5-A/20-A multiphase buck converters PMIC for automotive SoCs;
RTL9010:REALTEK的具备MACsec加解密功能的,车用高能效以太网PHY芯片;
TDA4AL Jacinto™ 处理器:
主要性能:
两个C7x浮点、矢量DSP,性能高达1.0GHz、160GFLOPS、512GOPS;
深度学习矩阵乘法加速器(MMA),性能高达8TOPS(8b)(频率为1.0GHz);
具有图像信号处理器(ISP)和多个视觉辅助加速器的视觉处理加速器(VPAC);
深度和运动处理加速器(DMPAC),双核64位Arm®Cortex®-A72微处理器子系统,性能高达2GHz–每个双核Cortex®-A72集群具有1MBL2共享缓存–每个Cortex®-A72内核具有32KBL1数据缓存和48KBL1指令缓存;
六个Arm®Cortex®-R5FMCU,1.0GHz–16K指令缓存,16K数据缓存,64KL2TCM–隔离MCU子系统中,有两个Arm®Cortex®-R5FMCU–通用计算分区中,有四个(TDA4VE)或两个(TDA4AL/TDA4VL)Arm®Cortex®-R5FMCU;
GPU IMGBXS-4-64,256kB缓存,高达800MHz,50GFLOPS,4GTexels/s(TDA4VE和TDA4VL);
FPGA主板
采用一片来自于LATTICE的低功耗FPGA:
在镜面背部有4个接触点,在组装之后分别和电路板的4个弹簧触点接触,推测应该是加热丝的接口,用于加热视窗面,防止积雪。
对于华为96线激光雷达,分析如下:
【1】华为96线激光雷达采用了905nm波长激光。905nm技术占据89%的市场份额,1550nm激光测距范围更远,但是成本较高。速腾M3和禾赛AT512分别采用了940nm和905nm技术,测距能力超过了现有的1550nm产品。
资料来源:San Francisco State University《Absorption Spectra_Atmosphere》
图达通之前主要使用1550nm技术,目前也推出905nm方案的Robin E产品。
图片来源:YOLO《Automotive LIDAR Market: Competitive Dynamics, Technology Evolution, and Revenue Trends》(Automotive LiDAR conference 2023, October 3-5 )
【2】华为96线激光雷达采用转镜+电子扫描方式,这种方式是目前半固态激光雷达较为主流的扫描方式。
转镜是目前应用最广的路线,包括禾赛、华为、图达通、镭神智能等大多数厂商都有采用转镜路线的产品。转镜路线的核心要素是电机控制,以及针对特定波长高反射率的镀膜反射镜。
转镜一般搭配振镜或者线光源实现激光扫描,其中,转镜用于水平扫描,振镜或者线光源用于垂直扫描。因此,“转镜+振镜”也被常被称为2维扫描,“转镜+线光源”被称为1维扫描或者1维扫描+电子扫描。
“转镜+线光源”的优势在于发射的是连续的线光斑,因此垂直方向的分辨率非常高。禾赛AT128的转镜+电子扫描:
图片来源:禾赛
图达通falcon激光雷达采用“转镜+振镜”方案,该方案灵活度较高,通过改变转镜和振镜的转速,能够设计灵活的ROI。
图片来源:中信证券
MEMS振镜是另一种扫描路线,主要是速腾聚创在使用,体积较小。由于MEMS微振镜口径较大,但在极端振动条件下使用时,良率较低,MEMS方案可能会被逐渐放弃,速腾聚创在下一代的M3产品中也由MEMS改为了转镜+电子扫描方式。
图片来源:YOLO《Automotive LIDAR Market: Competitive Dynamics, Technology Evolution, and Revenue Trends》(Automotive LiDAR conference 2023, October 3-5 )
速腾M1P的MEMS扫描:
图片来源:速腾聚创
【3】华为96线激光雷达发射光路和接收光路是非同轴的,使用各自的透镜,即旁轴光路,该光路优点是成像清晰程度较高,缺点是近场盲区较大。
目前速腾、禾赛等产品基本都是采用同轴光路。同轴光路是收发共用一组透镜,检测更为直接,易于对光路进行校准,近场盲区小。缺点是成本稍高,内部结构稍复杂,而且成像清晰程度比独立的旁轴成像要稍差。
禾赛的AT128的同轴光路:
图片来源:绿芯频道
【4】华为96线激光雷达采用EEL激光器。近些年,多家激光器公司开发多层VCSEL激光器,将发光功率密度提升了5-10倍,凭借在成本及性能方面的优势,从目前趋势来看,VCSEL正逐步取代EEL。华为的下一代192线激光雷达,也采用了VCSEL激光器。
EEL和VCSEL的指标对比:
【5】华为96线激光雷达采用SPAD作为接收器。在905nm路线下,SPAD/ SiPM替代 APD 已成大势。SPAD/SiPM面临的一个比较明显的挑战是自然光干扰,尤其是强烈日光的干扰。强烈的阳光入射会导致 SPAD单元饱和,并且在恢复初始状态前都无法吸收光子,因而有可能漏掉真正的反射信号。
资料来源:Anant Gupta et al.《Photon-Flooded Single-Photon 3D Cameras》,arxiv,中信证券研究部
所以在强烈的日光下,使用 SPAD/SiPM 的激光雷达经常会出现探测距离明显下降的问题。虽然目前已有一些算法进行日光干扰的处理,但往往效果并不完美,有时还会引入额外噪声,所以 SPAD 对自然光的处理还有一些挑战。
【6】华为96线激光雷达处理器采用了TDA4和FPGA,分立程度较高。目前激光雷达的一个发展方向是采用集成度越来越高的SoC,将SPAD、TIA、ADC 等都集成到 SoC 中,进一步降低成本,提升性能。具行业消息,禾赛AT512和一径科技的EZ6已经采用了集成度相当高的SoC处理器。
来源:禾赛科技招股书
华为96线激光雷达发布于2020年,虽然从指标上看,比现在的主流产品稍显落后,不过在相当多的技术方案上,和目前主流的激光雷达发展方向契合。
2023年12月26日,华为发布192线激光雷达。
华为192线激光雷达采用VCSEL+SPAD收发链路,以及转镜+电子扫描架构。具体参数:
测距:250米(最远),180米(10%反射率)
点云密度:184万点/秒
水平角分辨率:0.25°(@20Hz扫描),0.125°(@10Hz扫描)
垂直分辨率:0.1°
扫描频率:最高20Hz
期待华为激光雷达再迈新台阶。
近期准备继续做一篇华为192线激光雷达的分析,如有产品获取途径,请私信或者留言,非常感谢。
参考资料:
中信证券,激光雷达产业深度研究:从拆解五款激光雷达看智能驾驶投资机遇,https://zhuanlan.zhihu.com/p/568700438
传感器专家网,暴涨450%,超71万台!中国激光雷达遥遥领先!网友:被制裁不冤,https://mp.weixin.qq.com/s/mgXlzelZd5OBIIS9XhmUtg
Yvon Shong,聚焦激光雷达(四)——光学系统,https://zhuanlan.zhihu.com/p/622652543
芝能智芯,华为96线激光雷达拆解,https://www.ednchina.com/technews/24691.html
速腾聚创官网:https://www.robosense.cn/product
禾赛科技官网:https://www.hesaitech.com/cn/
图达通官网:https://www.seyond.cn/
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
网页端官网:www.zdjszx.com② 国内首个自动驾驶学习社区
国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频
③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!
自动驾驶感知:目标检测、语义分割、BEV感知、毫米波雷达视觉融合、激光视觉融合、车道线检测、目标跟踪、Occupancy、深度估计、transformer、大模型、在线地图、点云处理、模型部署、CUDA加速等技术交流群;
多传感器标定:相机在线/离线标定、Lidar-Camera标定、Camera-Radar标定、Camera-IMU标定、多传感器时空同步等技术交流群;
多传感器融合:多传感器后融合技术交流群;
规划控制与预测:规划控制、轨迹预测、避障等技术交流群;
定位建图:视觉SLAM、激光SLAM、多传感器融合SLAM等技术交流群;
三维视觉:三维重建、NeRF、3D Gaussian Splatting技术交流群;
自动驾驶仿真:Carla仿真、Autoware仿真等技术交流群;
自动驾驶开发:自动驾驶开发、ROS等技术交流群;
其它方向:自动标注与数据闭环、产品经理、硬件选型、求职面试、自动驾驶测试等技术交流群;
扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。