赞
踩
VOC2007数据集的文件结构如下图所示。
其中,文件夹Annotations
中存放的是图像的标注信息的xml文件,命名从000001.xml
开始;文件夹ImageSets
中存放的是图像划分的集合的txt文件,目标检测任务对应的train、val、trainval、test数据集的txt文件存放在Main
文件夹中;文件夹JPEGImages
中存放的是所有图片的jpg文件,命名从000001.jpg
开始;文件夹SegmentationClass
和SegmentationObject
中存放的是其他任务的数据信息。
文件夹Annotations
中存放的某一张图像的标注信息的xml文件里面的内容如下所示。
<annotation>
<folder>VOC2007</folder>
<!--文件名-->
<filename>000007.jpg</filename>
<!--数据来源-->
<source>
<!--数据来源-->
<database>The VOC2007 Database</database>
<annotation>PASCAL VOC2007</annotation>
<!--来源是flickr,一个雅虎的图像分享网站,下面是id,对于我们没有用-->
<image>flickr</image>
<flickrid>194179466</flickrid>
</source>
<!--图片的所有者,也没有用-->
<owner>
<flickrid>monsieurrompu</flickrid>
<name>Thom Zemanek</name>
</owner>
<!--图像尺寸,宽、高、长-->
<size>
<width>500</width>
<height>333</height>
<depth>3</depth>
</size>
<!--是否用于分割,0表示用于,1表示不用于-->
<segmented>0</segmented>
<!--下面是图像中标注的物体,每一个object包含一个标准的物体-->
<object>
<!--物体名称,拍摄角度-->
<name>car</name>
<pose>Unspecified</pose>
<!--是否被裁减,0表示完整,1表示不完整-->
<truncated>1</truncated>
<!--是否容易识别,0表示容易,1表示困难-->
<difficult>0</difficult>
<!--bounding box的四个坐标-->
<bndbox>
<xmin>141</xmin>
<ymin>50</ymin>
<xmax>500</xmax>
<ymax>330</ymax>
</bndbox>
</object>
</annotation>
关于VOC2007数据集的其他详细信息可见→VOC2007数据集详细分析。
DOTA数据集的官方链接→DOTA数据集链接。
DOTA数据集(全称A Large-scale Dataset for Object DeTection in Aerial Images)是用于航拍图像中的目标检测的大型图像数据集, 它可用于发现和评估航拍图像中的物体。 对于DOTA数据集,它包含来自不同传感器和平台的2806个航拍图像。每个图像的大小在大约800×800到4000×4000像素的范围内,并且包含各种比例,方向和形状的对象。这些DOTA图像由航空影像解释专家分类为15个常见对象类别。完全注释的DOTA图像包含188、282个实例,每个实例都由任意(8自由度)四边形标记。
目前DOTA数据集有三个版本:
DOTA数据集的文件结构如下图所示。
数据集DOTA文件夹下有train
、val
、test
三个文件夹。文件夹train
、val
下各有images
、labelTxt-v1.0
、labelTxt-v1.5
三个文件夹,文件夹test
下只有images
一个文件夹。
其中images
文件夹中存放的是遥感图像,如下图所示。
labelTxt-v1.0
文件夹中存放的是DOTA v1.0版本的标签信息,如下图所示,有labelTxt
、trainset_reclabelTxt
两个文件夹。labelTxt
文件夹中存放的是obb(定向边界框)标签信息,trainset_reclabelTxt
文件夹中存放的是hbb(水平边界框)标签信息。
labelTxt-v1.5
文件夹中存放的是DOTA v1.5版本的标签信息,与labelTxt-v1.0
文件夹类似,如下图所示,该文件夹下有存放obb(定向边界框)标签信息的文件夹DOTA-v1.5_train
和存放hbb(水平边界框)标签信息的文件夹DOTA-v1.5_train_hbb
。
使用Python将DOTA数据集的格式转换成VOC2007数据集的格式需要进行以下操作。
visual_DOTA.py
及结果如下所示。import cv2
import os
import numpy as np
thr=0.95
def custombasename(fullname):
return os.path.basename(os.path.splitext(fullname)[0])
def GetFileFromThisRootDir(dir,ext = None):
allfiles = []
needExtFilter = (ext != None)
for root,dirs,files in os.walk(dir):
for filespath in files:
filepath = os.path.join(root, filespath)
extension = os.path.splitext(filepath)[1][1:]
if needExtFilter and extension in ext:
allfiles.append(filepath)
elif not needExtFilter:
allfiles.append(filepath)
return allfiles
def visualise_gt(label_path, pic_path, newpic_path):
results = GetFileFromThisRootDir(label_path)
for result in results:
f = open(result,'r')
lines = f.readlines()
if len(lines)==0: #如果为空
print('文件为空',result)
continue
boxes = []
for i,line in enumerate(lines):
#score = float(line.strip().split(' ')[8])
#if i in [0,1]: #如果可视化DOTA-v1.5,前两行不需要,跳过,取消注释;如果可视化DOTA-v1.0,前两行需要,注释掉这两行代码
# continue
name = result.split('/')[-1]
box=line.strip().split(' ')[0:8]
box = np.array(box,dtype = np.float64)
#if float(score)>thr:
boxes.append(box)
boxes = np.array(boxes,np.float64)
f.close()
filepath=os.path.join(pic_path, name.split('.')[0]+'.png')
im=cv2.imread(filepath)
#print line3
for i in range(boxes.shape[0]):
box =np.array( [[boxes[i][0],boxes[i][1]],[boxes[i][2],boxes[i][3]], \
[boxes[i][4],boxes[i][5]],[boxes[i][6],boxes[i][7]]],np.int32)
box = box.reshape((-1,1,2))
cv2.polylines(im,[box],True,(0,0,255),2)
cv2.imwrite(os.path.join(newpic_path,result.split('/')[-1].split('.')[0]+'.png'),im)
#下面是有score的
# x,y,w,h,score=box.split('_')#
# score=float(score)
# cv2.rectangle(im,(int(x),int(y)),(int(x)+int(w),int(y)+int(h)),(0,0,255),1)
# cv2.putText(im,'%3f'%score, (int(x)+int(w),int(y)+int(h)+5),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0),1)
# cv2.imwrite(newpic_path+filename,im)
if __name__ == '__main__':
pic_path = 'E:/Remote Sensing/Data Set/DOTA/train/images/' #样本图片路径
label_path = 'E:/Remote Sensing/Data Set/DOTA/train/labelTxt-v1.0/trainset_reclabelTxt/'#DOTA标签的所在路径
newpic_path= 'E:/Remote Sensing/Data Set/DOTA/hbbshow/train/' #可视化保存路径
if not os.path.isdir(newpic_path):
os.makedirs(newpic_path)
visualise_gt(label_path, pic_path, newpic_path)
新建一个与VOC2007数据集的文件结构类似的DOTA数据集文件结构,只保留我们需要的部分。
由于DOTA数据集中有的图片纵横比太大,不能直接用于后续的训练,所以需要对DOTA数据集进行切割。将数据集中的图片切割为600
×
\times
× 600固定大小的图片,并对切割后的图片生成相对应的标注信息xml文件。切割的代码DOTA_VOC.py
及结果如下所示。
import os
import imageio
from xml.dom.minidom import Document
import numpy as np
import copy, cv2
def save_to_xml(save_path, im_width, im_height, objects_axis, label_name, name, hbb=True):
im_depth = 0
object_num = len(objects_axis)
doc = Document()
annotation = doc.createElement('annotation')
doc.appendChild(annotation)
folder = doc.createElement('folder')
folder_name = doc.createTextNode('VOC2007')
folder.appendChild(folder_name)
annotation.appendChild(folder)
filename = doc.createElement('filename')
filename_name = doc.createTextNode(name)
filename.appendChild(filename_name)
annotation.appendChild(filename)
source = doc.createElement('source')
annotation.appendChild(source)
database = doc.createElement('database')
database.appendChild(doc.createTextNode('The VOC2007 Database'))
source.appendChild(database)
annotation_s = doc.createElement('annotation')
annotation_s.appendChild(doc.createTextNode('PASCAL VOC2007'))
source.appendChild(annotation_s)
image = doc.createElement('image')
image.appendChild(doc.createTextNode('flickr'))
source.appendChild(image)
flickrid = doc.createElement('flickrid')
flickrid.appendChild(doc.createTextNode('322409915'))
source.appendChild(flickrid)
owner = doc.createElement('owner')
annotation.appendChild(owner)
flickrid_o = doc.createElement('flickrid')
flickrid_o.appendChild(doc.createTextNode('knautia'))
owner.appendChild(flickrid_o)
name_o = doc.createElement('name')
name_o.appendChild(doc.createTextNode('yang'))
owner.appendChild(name_o)
size = doc.createElement('size')
annotation.appendChild(size)
width = doc.createElement('width')
width.appendChild(doc.createTextNode(str(im_width)))
height = doc.createElement('height')
height.appendChild(doc.createTextNode(str(im_height)))
depth = doc.createElement('depth')
depth.appendChild(doc.createTextNode(str(im_depth)))
size.appendChild(width)
size.appendChild(height)
size.appendChild(depth)
segmented = doc.createElement('segmented')
segmented.appendChild(doc.createTextNode('0'))
annotation.appendChild(segmented)
for i in range(object_num):
objects = doc.createElement('object')
annotation.appendChild(objects)
object_name = doc.createElement('name')
object_name.appendChild(doc.createTextNode(label_name[int(objects_axis[i][-1])]))
objects.appendChild(object_name)
pose = doc.createElement('pose')
pose.appendChild(doc.createTextNode('Unspecified'))
objects.appendChild(pose)
truncated = doc.createElement('truncated')
truncated.appendChild(doc.createTextNode('1'))
objects.appendChild(truncated)
difficult = doc.createElement('difficult')
difficult.appendChild(doc.createTextNode('0'))
objects.appendChild(difficult)
bndbox = doc.createElement('bndbox')
objects.appendChild(bndbox)
if hbb:
x0 = doc.createElement('xmin')
x0.appendChild(doc.createTextNode(str((objects_axis[i][0]))))
bndbox.appendChild(x0)
y0 = doc.createElement('ymin')
y0.appendChild(doc.createTextNode(str((objects_axis[i][1]))))
bndbox.appendChild(y0)
x1 = doc.createElement('xmax')
x1.appendChild(doc.createTextNode(str((objects_axis[i][2]))))
bndbox.appendChild(x1)
y1 = doc.createElement('ymax')
y1.appendChild(doc.createTextNode(str((objects_axis[i][5]))))
bndbox.appendChild(y1)
else:
x0 = doc.createElement('x0')
x0.appendChild(doc.createTextNode(str((objects_axis[i][0]))))
bndbox.appendChild(x0)
y0 = doc.createElement('y0')
y0.appendChild(doc.createTextNode(str((objects_axis[i][1]))))
bndbox.appendChild(y0)
x1 = doc.createElement('x1')
x1.appendChild(doc.createTextNode(str((objects_axis[i][2]))))
bndbox.appendChild(x1)
y1 = doc.createElement('y1')
y1.appendChild(doc.createTextNode(str((objects_axis[i][3]))))
bndbox.appendChild(y1)
x2 = doc.createElement('x2')
x2.appendChild(doc.createTextNode(str((objects_axis[i][4]))))
bndbox.appendChild(x2)
y2 = doc.createElement('y2')
y2.appendChild(doc.createTextNode(str((objects_axis[i][5]))))
bndbox.appendChild(y2)
x3 = doc.createElement('x3')
x3.appendChild(doc.createTextNode(str((objects_axis[i][6]))))
bndbox.appendChild(x3)
y3 = doc.createElement('y3')
y3.appendChild(doc.createTextNode(str((objects_axis[i][7]))))
bndbox.appendChild(y3)
f = open(save_path,'w')
f.write(doc.toprettyxml(indent = ''))
f.close()
class_list = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field',
'small-vehicle', 'large-vehicle', 'ship',
'tennis-court', 'basketball-court',
'storage-tank', 'soccer-ball-field',
'roundabout', 'harbor',
'swimming-pool', 'helicopter'] # DOTA v1.0有15个类别;DOTA v1.5有16个类别,比DOTA v1.0多一个container-crane类别
def format_label(txt_list):
format_data = []
for i in txt_list[0:]: # 处理DOTA v1.0为txt_list[0:];处理DOTA v1.5改为txt_list[2:]
format_data.append(
[int(float(xy)) for xy in i.split(' ')[:8]] + [class_list.index(i.split(' ')[8])]
# {'x0': int(i.split(' ')[0]),
# 'x1': int(i.split(' ')[2]),
# 'x2': int(i.split(' ')[4]),
# 'x3': int(i.split(' ')[6]),
# 'y1': int(i.split(' ')[1]),
# 'y2': int(i.split(' ')[3]),
# 'y3': int(i.split(' ')[5]),
# 'y4': int(i.split(' ')[7]),
# 'class': class_list.index(i.split(' ')[8]) if i.split(' ')[8] in class_list else 0,
# 'difficulty': int(i.split(' ')[9])}
)
if i.split(' ')[8] not in class_list :
print ('warning found a new label :', i.split(' ')[8])
exit()
return np.array(format_data)
def clip_image(file_idx, image, boxes_all, width, height):
# print ('image shape', image.shape)
if len(boxes_all) > 0:
shape = image.shape
for start_h in range(0, shape[0], 256):
for start_w in range(0, shape[1], 256):
boxes = copy.deepcopy(boxes_all)
box = np.zeros_like(boxes_all)
start_h_new = start_h
start_w_new = start_w
if start_h + height > shape[0]:
start_h_new = shape[0] - height
if start_w + width > shape[1]:
start_w_new = shape[1] - width
top_left_row = max(start_h_new, 0)
top_left_col = max(start_w_new, 0)
bottom_right_row = min(start_h + height, shape[0])
bottom_right_col = min(start_w + width, shape[1])
subImage = image[top_left_row:bottom_right_row, top_left_col: bottom_right_col]
box[:, 0] = boxes[:, 0] - top_left_col
box[:, 2] = boxes[:, 2] - top_left_col
box[:, 4] = boxes[:, 4] - top_left_col
box[:, 6] = boxes[:, 6] - top_left_col
box[:, 1] = boxes[:, 1] - top_left_row
box[:, 3] = boxes[:, 3] - top_left_row
box[:, 5] = boxes[:, 5] - top_left_row
box[:, 7] = boxes[:, 7] - top_left_row
box[:, 8] = boxes[:, 8]
center_y = 0.25*(box[:, 1] + box[:, 3] + box[:, 5] + box[:, 7])
center_x = 0.25*(box[:, 0] + box[:, 2] + box[:, 4] + box[:, 6])
# print('center_y', center_y)
# print('center_x', center_x)
# print ('boxes', boxes)
# print ('boxes_all', boxes_all)
# print ('top_left_col', top_left_col, 'top_left_row', top_left_row)
cond1 = np.intersect1d(np.where(center_y[:]>=0 )[0], np.where(center_x[:]>=0 )[0])
cond2 = np.intersect1d(np.where(center_y[:] <= (bottom_right_row - top_left_row))[0],
np.where(center_x[:] <= (bottom_right_col - top_left_col))[0])
idx = np.intersect1d(cond1, cond2)
# idx = np.where(center_y[:]>=0 and center_x[:]>=0 and center_y[:] <= (bottom_right_row - top_left_row) and center_x[:] <= (bottom_right_col - top_left_col))[0]
# save_path, im_width, im_height, objects_axis, label_name
if len(idx) > 0:
name="%s_%04d_%04d.png" % (file_idx, top_left_row, top_left_col)
print(name)
xml = os.path.join(save_dir, 'Annotations', "%s_%04d_%04d.xml" % (file_idx, top_left_row, top_left_col))
save_to_xml(xml, subImage.shape[1], subImage.shape[0], box[idx, :], class_list, str(name))
# print ('save xml : ', xml)
if subImage.shape[0] > 5 and subImage.shape[1] >5:
img = os.path.join(save_dir, 'JPEGImages', "%s_%04d_%04d.png" % (file_idx, top_left_row, top_left_col))
#cv2.imwrite(img, subImage)
cv2.imwrite(img, cv2.cvtColor(subImage, cv2.COLOR_RGB2BGR))
print ('class_list', len(class_list))
raw_images_dir = 'E:/Remote Sensing/Data Set/DOTA/train/images/'
raw_label_dir = 'E:/Remote Sensing/Data Set/DOTA/train/labelTxt-v1.0/trainset_reclabelTxt/'
save_dir = 'E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/'
images = [i for i in os.listdir(raw_images_dir) if 'png' in i]
labels = [i for i in os.listdir(raw_label_dir) if 'txt' in i]
print ('find image', len(images))
print ('find label', len(labels))
min_length = 1e10
max_length = 1
for idx, img in enumerate(images):
print (idx, 'read image', img)
img_data = imageio.imread(os.path.join(raw_images_dir, img))
# if len(img_data.shape) == 2:
# img_data = img_data[:, :, np.newaxis]
# print ('find gray image')
txt_data = open(os.path.join(raw_label_dir, img.replace('png', 'txt')), 'r').readlines()
# print (idx, len(format_label(txt_data)), img_data.shape)
# if max(img_data.shape[:2]) > max_length:
# max_length = max(img_data.shape[:2])
# if min(img_data.shape[:2]) < min_length:
# min_length = min(img_data.shape[:2])
# if idx % 50 ==0:
# print (idx, len(format_label(txt_data)), img_data.shape)
# print (idx, 'min_length', min_length, 'max_length', max_length)
box = format_label(txt_data)
clip_image(img.strip('.png'), img_data, box, 600, 600)
./VOCdevkit2007/VOC2007/Annotations/
文件夹下的xml文件进行处理,删除不符合要求的xml文件及./VOCdevkit2007/VOC2007/JPEGImages/
文件夹下对应的图片。不符合要求的xml文件有以下三种情况:1. 标注目标为空;2. 所有标注目标的difficult均为1;3. 标注目标存在越界的问题(注:标注越界有六种情况 xmin<0、ymin<0、xmax>width、ymax>height、xmax<xmin、ymax<ymin)。处理xml文件的代码remove.py
及结果如下所示。import os
import shutil
import xml.dom.minidom
import xml.etree.ElementTree as ET
def custombasename(fullname):
return os.path.basename(os.path.splitext(fullname)[0])
def GetFileFromThisRootDir(dir,ext = None):
allfiles = []
needExtFilter = (ext != None)
for root,dirs,files in os.walk(dir):
for filespath in files:
filepath = os.path.join(root, filespath)
extension = os.path.splitext(filepath)[1][1:]
if needExtFilter and extension in ext:
allfiles.append(filepath)
elif not needExtFilter:
allfiles.append(filepath)
return allfiles
def cleandata(path, img_path, ext, label_ext):
name = custombasename(path) #名称
if label_ext == '.xml':
tree = ET.parse(path)
root = tree.getroot()
size=root.find('size')
width=int(size.find('width').text)
#print(width)
height=int(size.find('height').text)
#print(height)
objectlist = root.findall('object')
num = len(objectlist)
#print(num)
count=0
count1=0
minus=0
for object in objectlist:
difficult = int(object.find('difficult').text)
#print(difficult)
bndbox=object.find('bndbox')
xmin = int(bndbox.find('xmin').text)
#print(xmin)
ymin = int(bndbox.find('ymin').text)
#print(ymin)
xmax = int(bndbox.find('xmax').text)
#print(xmax)
ymax = int(bndbox.find('ymax').text)
#print(ymax)
if xmin<0 or ymin<0 or width<xmax or height<ymax or xmax<xmin or ymax<ymin: # 目标标注越界的六种情况
minus+=1
count = count1 + difficult
count1 = count
if num == 0 or count == num or minus != 0: # 不符合要求的三种情况
image_path = os.path.join(img_path, name + ext) #样本图片的名称
os.remove(image_path) #移除该标注文件
os.remove(path) #移除该图片文件
if __name__ == '__main__':
root = 'E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/'
img_path = os.path.join(root, 'JPEGImages') #分割后的样本集
label_path = os.path.join(root, 'Annotations') #分割后的标签
ext = '.png' #图片的后缀
label_ext = '.xml'
label_list = GetFileFromThisRootDir(label_path)
for path in label_list:
cleandata(path, img_path, ext, label_ext)
split_data.py
及结果如下所示。import os
import random
trainval_percent = 0.8 # 表示训练集和验证集(交叉验证集)所占总图片的比例
train_percent = 0.75 # 训练集所占验证集的比例
xmlfilepath = 'E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/Annotations'
txtsavepath = 'E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent) # xml文件中的交叉验证集数
tr = int(tv * train_percent) # xml文件中的训练集数,注意,我们在前面定义的是训练集占验证集的比例
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/ImageSets/Main/trainval.txt', 'w')
ftest = open('E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/ImageSets/Main/test.txt', 'w')
ftrain = open('E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/ImageSets/Main/train.txt', 'w')
fval = open('E:/Remote Sensing/Data Set/VOCdevkit2007/VOC2007/ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
print("done!")
result
文件夹复制到新建的DOTA数据集的VOC文件结构中,后面训练测试模型时会用到。 至此,就可以将DOTA数据集的格式转换成VOC2007数据集的的格式了,我们得到一个属于DOTA数据集的VOCdevkit2007
文件夹!
参考文章:https://blog.csdn.net/mary_0830/article/details/104263619
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。