当前位置:   article > 正文

FATE —— 二.2.4 Homo-NN自定义模型_fate 联邦学习框架homonn

fate 联邦学习框架homonn
前言

FATE版本为1.10.0单机部署版,win10+centos7

构建模型

在FATE 1.10.0中,您可以使用管道提交PyTorch Sequential模型。然而,Sequential模型结合PyTorch的内置层可能不足以表示更复杂的模型。例如,当构建与ResNet中发现的模块类似的剩余模块时,需要重用某些模块的输出,这可能无法使用Sequential模型。

为了解决这个问题,FATE 1.10.0中引入了model_zoo模块,该模块位于federatedml.nn.model_goo下。该模块允许您自定义自己的PyTorch模型,前提是它是基于torch.nn.module开发的并实现了转发接口。有关更多信息,请参阅自定义模块上的PyTorch文档PyTorch模块。要在联合任务中使用自定义模型,只需将其放置在federatedml/nn/model_zoo目录中,并在提交任务时通过接口指定模块和模型类。Homo NN将自动搜索并导入您已实现的模型。

例如,考虑MNIST手写识别的任务。我们可以先在本地编写一个带有残余连接的简单神经网络模块,然后在联合任务中使用它。

定制模型

将模型代码命名为image_net.py,您可以将其直接放在fedratedml/nn/model_zoo下,也可以使用jupyter笔记本的快捷界面将其直接保存到fedratedml/nn/model_zoo

frompipeline.component.nnimportsave_to_fate
  1. %%save_to_fate model image_net.py
  2. import torch as t
  3. from torch import nn
  4. from torch.nn import Module
  5. # the residual component
  6. class Residual(Module):
  7. def __init__(self, ch, kernel_size=3, padding=1):
  8. super(Residual, self).__init__()
  9. self.convs = t.nn.ModuleList([nn.Conv2d(ch, ch, kernel_size=kernel_size, padding=padding) for i in range(2)])
  10. self.act = nn.ReLU()
  11. def forward(self, x):
  12. x = self.act(self.convs[0](x))
  13. x_ = self.convs[1](x)
  14. return self.act(x + x_)
  15. # we call it image net
  16. class ImgNet(nn.Module):
  17. def __init__(self, class_num=10):
  18. super(ImgNet, self).__init__()
  19. self.seq = t.nn.Sequential(
  20. nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5),
  21. Residual(12),
  22. nn.MaxPool2d(kernel_size=3),
  23. nn.Conv2d(in_channels=12, out_channels=12, kernel_size=3),
  24. Residual(12),
  25. nn.AvgPool2d(kernel_size=3)
  26. )
  27. self.fc = t.nn.Sequential(
  28. nn.Linear(48, 32),
  29. nn.ReLU(),
  30. nn.Linear(32, class_num)
  31. )
  32. self.softmax = nn.Softmax(dim=1)
  33. def forward(self, x):
  34. x = self.seq(x)
  35. x = x.flatten(start_dim=1)
  36. x = self.fc(x)
  37. if self.training:
  38. return x
  39. else:
  40. return self.softmax(x)
  1. img_model = ImgNet(10)
  2. img_model
  1. ImgNet(
  2. (seq): Sequential(
  3. (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  4. (1): Residual(
  5. (convs): ModuleList(
  6. (0): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  7. (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  8. )
  9. (act): ReLU()
  10. )
  11. (2): MaxPool2d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
  12. (3): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1))
  13. (4): Residual(
  14. (convs): ModuleList(
  15. (0): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  16. (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  17. )
  18. (act): ReLU()
  19. )
  20. (5): AvgPool2d(kernel_size=3, stride=3, padding=0)
  21. )
  22. (fc): Sequential(
  23. (0): Linear(in_features=48, out_features=32, bias=True)
  24. (1): ReLU()
  25. (2): Linear(in_features=32, out_features=10, bias=True)
  26. )
  27. (softmax): Softmax(dim=1)
  28. )
  1. from federatedml.nn.dataset.image import ImageDataset
  2. ds = ImageDataset()
  3. ds.load('/mnt/hgfs/mnist/')
  1. ds.get_sample_ids()[0] # 数据展示
  2. ds[0]
运行本地测试

我们可以使用我们的数据集、自定义模型和Trainer进行本地调试,以测试程序是否可以运行。在本地测试的情况下,将跳过所有联合过程,并且模型将不执行fed平均。

  1. import torch as t
  2. from federatedml.nn.homo.trainer.fedavg_trainer import FedAVGTrainer
  3. trainer = FedAVGTrainer(epochs=3, batch_size=256, shuffle=True, data_loader_worker=8, pin_memory=False)
  4. trainer.set_model(img_model) # set model
trainer.local_mode() # !! use local mode to skip federation process !!
  1. optimizer = t.optim.Adam(img_model.parameters(), lr=0.01)
  2. loss = t.nn.CrossEntropyLoss()
  3. trainer.train(train_set=ds, optimizer=optimizer, loss=loss)

它起作用了!现在我们可以提交联合任务了。

提交具有自定义模型的Homo NN任务
  1. import torch as t
  2. from torch import nn
  3. from pipeline import fate_torch_hook
  4. from pipeline.component import HomoNN
  5. from pipeline.backend.pipeline import PipeLine
  6. from pipeline.component import Reader, Evaluation, DataTransform
  7. from pipeline.interface import Data, Model
  8. t = fate_torch_hook(t)
  1. import os
  2. # bind data path to name & namespace
  3. # fate_project_path = os.path.abspath('../../../../')
  4. host = 10000
  5. guest = 9999
  6. arbiter = 10000
  7. pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host,
  8. arbiter=arbiter)
  9. data_0 = {"name": "mnist_guest", "namespace": "experiment"}
  10. data_1 = {"name": "mnist_host", "namespace": "experiment"}
  11. # 路径根据自己得文件位置及名称进行调整,这里以FATE 1.10.0 版本为例
  12. data_path_0 = '/mnt/hgfs/mnist/'
  13. data_path_1 = '/mnt/hgfs/mnist/'
  14. pipeline.bind_table(name=data_0['name'], namespace=data_0['namespace'], path=data_path_0)
  15. pipeline.bind_table(name=data_1['name'], namespace=data_1['namespace'], path=data_path_1)

{'namespace': 'experiment', 'table_name': 'mnist_host'}

  1. # 定义reader
  2. reader_0 = Reader(name="reader_0")
  3. reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=data_0)
  4. reader_0.get_party_instance(role='host', party_id=host).component_param(table=data_1)
nn.CustModel

在fate_arch_hook之后,我们可以使用t.nn.CustModel来指定模型。您应该在此处指定模块名和类名。也可以在此设置模型初始化参数。初始化参数必须是JSON可序列化的,否则无法提交此PipeLine。

  1. from pipeline.component.homo_nn import DatasetParam, TrainerParam
  2. model = t.nn.Sequential(
  3. # the class_num=10 is the initialzation parameter for your model
  4. t.nn.CustModel(module_name='image_net', class_name='ImgNet', class_num=10)
  5. )
  6. nn_component = HomoNN(name='nn_0',
  7. model=model, # your cust model
  8. loss=t.nn.CrossEntropyLoss(),
  9. optimizer=t.optim.Adam(model.parameters(), lr=0.01),
  10. dataset=DatasetParam(dataset_name='image'), # use image dataset
  11. trainer=TrainerParam(trainer_name='fedavg_trainer', epochs=3, batch_size=1024, validation_freqs=1),
  12. torch_seed=100 # global random seed
  13. )
  1. pipeline.add_component(reader_0)
  2. pipeline.add_component(nn_component, data=Data(train_data=reader_0.output.data))
  3. pipeline.add_component(Evaluation(name='eval_0', eval_type='multi'), data=Data(data=nn_component.output.data))
  1. pipeline.compile()
  2. pipeline.fit()

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/356567
推荐阅读
相关标签
  

闽ICP备14008679号