赞
踩
神经网络的成功建立在大量的干净数据和很深的网络模型基础上。但是在现实场景中数据和模型往往不会特别理想,比如数据层面有误标记的情况,像小狗被标注成狼,而且实际的业务场景讲究时效性,神经网络的层数不能特别深。
腾讯优图不断迭代数据和模型缺陷情况下神经网络的有效训练方法,通过noisy label learning和collaborative learning技术,实现用比较浅的网络解决noisy dataset问题。相关技术已经在腾讯的众多业务场景上(行人重识别,内容审核等)落地。本文整理自腾讯优图和机器之心联合主办的「CVPR2020线上分享」,分享嘉宾为腾讯优图实验室高级研究员Louis。
刻画noisy label与任务目标
一般来讲,noisy label是可以通过一个噪音转移矩阵T来刻画,也就是noise transition matrix T。人为设计一个噪音转移矩阵T,之后如果我们知道这个数据集中 clean label的分布,将这个分布乘以T就可以得到noisy label的分布。有了noisy label分布和对应的数据集之后,就可以进行很多带噪方法的验证。
接下来用数学描述来刻画一下我们带噪学习的目标。对于一个分类任务,我们的目标可以写成下面的形式,x和y代表样本和对应的label, 在今天的语境下F是神经网络。我们的任务目标是在数据集下优化一个loss function,使得在noisy label下训练得到的解,在性能上接近在clean label下训练得到的解,那么数学表达就是,f ̃是f的一个子集。
各显神通,主要带噪学习方法探索
关于带噪学习,近些年有一些重要论文。
NeurlPS 2018上的一篇论文(Generalized Cross Entropy Loss Training Deep Neural Networks with Noisy Labels)提出GCE loss(Generalized Cross Entropy loss)。它的背景是,MAE以均等分配的方式处理各个sample,而CE(cross entropy)会向识别困难的sample倾斜,因此针对noisy label,MAE比CE更加鲁棒,但是CE的准确度更高,拟合也更快。于是这篇文章提出GCE loss,结合MAE与CE二者的优势。
还有的论文(LDMI: A Novel Information-theoretic Loss Function for Training Deep Nets Robust to Label Noise, NeurlPS 2019)是基于信息论设计的loss function,Deterministic information loss。它的Motivation是想寻找一个信息测度(information measure)I。假设在I下任意存在两个分类器f、f’,如果在噪音数据集下,通过I, f比f’表现得更好,那么在干净数据集下,f比f’表现得也好,也就是说它在噪音数据集和干净数据集上满足一致性。如果在噪音数据集下它表现得好,通过一致性,在干净数据集下表现得也一定很好。
把时间往前推进一下,讲一些目前正在审稿中的文章(Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates (under review)
;Loss with Paired Samples: A Robust Learning Approach that Adapts to Label Noise (under review),关于Peer loss。Peer loss是由两个loss function的加权得到的,比如l1, l2。α是一个超参数,衡量两个loss的权重大小。l1、l2可以是任何分类导向的loss function,比如CE、MSE、MAE都行。Loss的构造主要是在于样本的构造上,我们看l1的样本,Xi对应
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。