赞
踩
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。
RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件)。RabbitMQ服务器是用Erlang语言编写的,而集群和故障转移是构建在开放电信平台框架上的。本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发
RabbitMq支持多种模式 , 支持集群 主从等多种部署 .
1. 解耦(为面向服务的架构(SOA)提供基本的最终一致性实现)
场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。
传统模式的缺点:
假如库存系统无法访问,则订单减库存将失败,从而导致订单失败订单系统与库存系统耦合引入消息队列
订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦为了保证库存肯定有,可以将队列大小设置成库存数量,或者采用其他方式解决。基于消息的模型,关心的是“通知”,而非“处理”。
短信、邮件通知、缓存刷新等操作使用消息队列进行通知。
RPC: 异步调用,及时获得调用结果,具有强一致性结果,关心业务调用处理结果。消息队列:两次异步RPC调用,将调用内容在队列中进行转储,并选择合适的时机进行投递(错峰流控)2. 异步提升效率
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式
(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端
(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间
引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
流量削峰也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛
应用场景:系统其他时间A系统每秒请求量就100个,系统可以稳定运行。系统每天晚间八点有秒杀活动,每秒并发请求量增至1万条,但是系统最大的处理能力只能每秒处理1000个请求,于是系统崩溃,服务器宕机。
之前架构:大量用户(100万用户)通过浏览器在晚上八点高峰期同时参与秒杀活动。大量的请求涌入我们的系统中,高峰期达到每秒钟5000个请求,大量的请求打到MySQL上,每秒钟预计执行3000条SQL。但是一般的MySQL每秒钟扛住2000个请求就不错了,如果达到3000个请求的话可能MySQL直接就瘫痪了,从而系统无法被使用。但是高峰期过了之后,就成了低峰期,可能也就1万用户访问系统,每秒的请求数量也就50个左右,整个系统几乎没有任何压力。
引入MQ:100万用户在高峰期的时候,每秒请求有5000个请求左右,将这5000请求写入MQ里面,系统A每秒最多只能处理2000请求,因为MySQL每秒只能处理2000个请求。系统A从MQ中慢慢拉取请求,每秒就拉取2000个请求,不要超过自己每秒能处理的请求数量即可。MQ,每秒5000个请求进来,结果只有2000个请求出去,所以在秒杀期间(将近一小时)可能会有几十万或者几百万的请求积压在MQ中。
关于流量削峰:秒杀系统流量削峰这事儿应该怎么做?
这个短暂的高峰期积压是没问题的,因为高峰期过了之后,每秒就只有50个请求进入MQ了,但是系统还是按照每秒2000个请求的速度在处理,所以说,只要高峰期一过,系统就会快速将积压的消息消费掉。我们在此计算一下,每秒在MQ积压3000条消息,1分钟会积压18万,1小时积压1000万条消息,高峰期过后,1个多小时就可以将积压的1000万消息消费掉。
优点
优点就是以上的那些场景应用,就是在特殊场景下有其对应的好处,解耦、异步、削峰。
缺点
系统的可用性降低系统引入的外部依赖越多,系统越容易挂掉,本来只是A系统调用BCD三个系统接口就好,ABCD四个系统不报错整个系统会正常运行。引入了MQ之后,虽然ABCD系统没出错,但MQ挂了以后,整个系统也会崩溃。
系统的复杂性提高引入了MQ之后,需要考虑的问题也变得多了,如何保证消息没有重复消费?如何保证消息不丢失?怎么保证消息传递的顺序?
一致性问题A系统发送完消息直接返回成功,但是BCD系统之中若有系统写库失败,则会产生数据不一致的问题。
Redis:没有相应的机制保证消息的消费,当消费者消费失败的时候,消息体丢失,需要手动处理
RabbitMQ:具有消息消费确认,即使消费者消费失败,也会自动使消息体返回原队列,同时可全程持久化,保证消息体被正确消费
Reids:不提供,需自行实现
RabbitMQ:具有发布确认功能,保证消息被发布到服务器
Redis:采用主从模式,读写分离,但是故障转移还没有非常完善的官方解决方案
RabbitMQ:集群采用磁盘、内存节点,任意单点故障都不会影响整个队列的操作
Redis:将整个Redis实例持久化到磁盘
RabbitMQ:队列,消息,都可以选择是否持久化
Redis:不提供,需自行实现
RabbitMQ:根据消费者情况,进行消息的均衡分发
Redis:不提供,需自行实现
RabbitMQ:后台可以监控某个队列的所有信息,(内存,磁盘,消费者,生产者,速率等)
Redis:不提供,需自行实现
RabbitMQ:服务器过载的情况,对生产者速率会进行限制,保证服务可靠性
对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。
测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。
应用场景分析
Redis:轻量级,高并发,延迟敏感
即时数据分析、秒杀计数器、缓存等
RabbitMQ:重量级,高并发,异步
批量数据异步处理、并行任务串行化,高负载任务的负载均衡等
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。