当前位置:   article > 正文

一文看懂Linux内核页缓存(Page Cache)_linux pagecache

linux pagecache

我们知道文件一般存放在硬盘(机械硬盘或固态硬盘)中,CPU 并不能直接访问硬盘中的数据,而是需要先将硬盘中的数据读入到内存中,然后才能被 CPU 访问。

由于读写硬盘的速度比读写内存要慢很多(DDR4 内存读写速度是机械硬盘500倍,是固态硬盘的200倍),所以为了避免每次读写文件时,都需要对硬盘进行读写操作,Linux 内核使用 页缓存(Page Cache) 机制来对文件中的数据进行缓存。

本文使用的 Linux 内核版本为:Linux-2.6.23

什么是页缓存

为了提升对文件的读写效率,Linux 内核会以页大小(4KB)为单位,将文件划分为多数据块。当用户对文件中的某个数据块进行读写操作时,内核首先会申请一个内存页(称为 页缓存)与文件中的数据块进行绑定。如下图所示:

在这里插入图片描述
如上图所示,当用户对文件进行读写时,实际上是对文件的 页缓存 进行读写。所以对文件进行读写操作时,会分以下两种情况进行处理:

当从文件中读取数据时,如果要读取的数据所在的页缓存已经存在,那么就直接把页缓存的数据拷贝给用户即可。否则,内核首先会申请一个空闲的内存页(页缓存),然后从文件中读取数据到页缓存,并且把页缓存的数据拷贝给用户。
当向文件中写入数据时,如果要写入的数据所在的页缓存已经存在,那么直接把新数据写入到页缓存即可。否则,内核首先会申请一个空闲的内存页(页缓存),然后从文件中读取数据到页缓存,并且把新数据写入到页缓存中。对于被修改的页缓存,内核会定时把这些页缓存刷新到文件中。

页缓存的实现
前面主要介绍了页缓存的作用和原理,接下来我们将会分析 Linux 内核是怎么实现页缓存机制的。

  1. address_space
    在 Linux 内核中,使用 file 对象来描述一个被打开的文件,其中有个名为 f_mapping 的字段,定义如下:
struct file {
    ...
    struct address_space *f_mapping;
};
  • 1
  • 2
  • 3
  • 4

从上面代码可以看出,f_mapping 字段的类型为 address_space 结构,其定义如下:

struct address_space {
    struct inode           *host;      /* owner: inode, block_device */
    struct radix_tree_root page_tree;  /* radix tree of all pages */
    rwlock_t               tree_lock;  /* and rwlock protecting it */
    ...
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

address_space 结构其中的一个作用就是用于存储文件的 页缓存,下面介绍一下各个字段的作用:

  • host:指向当前 address_space 对象所属的文件 inode 对象(每个文件都使用一个 inode 对象表示)。
  • page_tree:用于存储当前文件的 页缓存。
  • tree_lock:用于防止并发访问 page_tree 导致的资源竞争问题。

从 address_space 对象的定义可以看出,文件的 页缓存 使用了 radix树 来存储。

radix树:又名基数树,它使用键值(key-value)对的形式来保存数据,并且可以通过键快速查找到其对应的值。内核以文件读写操作中的数据 偏移量 作为键,以数据偏移量所在的 页缓存 作为值,存储在 address_space 结构的 page_tree 字段中。
下图展示了上述各个结构之间的关系:

如果对 radix树 不太了解,可以简单将其看成可以通过文件偏移量快速找到其所在 页缓存 的结构,有机会我会另外写一篇关于 radix树 的文章。

  1. 读文件操作
    现在我们来分析一下读取文件数据的过程,用户可以通过调用 read 系统调用来读取文件中的数据,其调用链如下:
read()
└→ sys_read()
   └→ vfs_read()
      └→ do_sync_read()
         └→ generic_file_aio_read()
            └→ do_generic_file_read()
               └→ do_generic_mapping_read()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

从上面的调用链可以看出,read 系统调用最终会调用 do_generic_mapping_read 函数来读取文件中的数据,其实现如下:

void
do_generic_mapping_read(struct address_space *mapping,
                        struct file_ra_state *_ra,
                        struct file *filp,
                        loff_t *ppos,
                        read_descriptor_t *desc,
                        read_actor_t actor)
{
    struct inode *inode = mapping->host;
    unsigned long index;
    struct page *cached_page;
    ...

    cached_page = NULL;
    index = *ppos >> PAGE_CACHE_SHIFT;
    ...

    for (;;) {
        struct page *page;
        ...

find_page:
        // 1. 查找文件偏移量所在的页缓存是否存在
        page = find_get_page(mapping, index);
        if (!page) {
            ...
            // 2. 如果页缓存不存在, 那么跳到 no_cached_page 进行处理
            goto no_cached_page; 
        }
        ...

page_ok:
        ...
        // 3. 如果页缓存存在, 那么把页缓存的数据拷贝到用户应用程序的内存中
        ret = actor(desc, page, offset, nr);
        ...
        if (ret == nr && desc->count)
            continue;
        goto out;
        ...

readpage:
        // 4. 从文件读取数据到页缓存中
        error = mapping->a_ops->readpage(filp, page);
        ...
        goto page_ok;
        ...

no_cached_page:
        if (!cached_page) {
            // 5. 申请一个内存页作为页缓存
            cached_page = page_cache_alloc_cold(mapping);
            ...
        }

        // 6. 把新申请的页缓存添加到文件页缓存中
        error = add_to_page_cache_lru(cached_page, mapping, index, GFP_KERNEL);
        ...
        page = cached_page;
        cached_page = NULL;
        goto readpage;
    }

out:
    ...
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

do_generic_mapping_read 函数的实现比较复杂,经过精简后,上面代码只留下最重要的逻辑,可以归纳为以下几个步骤:

  • 通过调用 find_get_page 函数查找要读取的文件偏移量所对应的页缓存是否存在,如果存在就把页缓存中的数据拷贝到应用程序的内存中。
  • 否则调用 page_cache_alloc_cold 函数申请一个空闲的内存页作为新的页缓存,并且通过调用 add_to_page_cache_lru 函数把新申请的页缓存添加到文件页缓存和 LRU 队列中(后面会介绍)。
  • 通过调用 readpage 接口从文件中读取数据到页缓存中,并且把页缓存的数据拷贝到应用程序的内存中。

从上面代码可以看出,当页缓存不存在时会申请一块空闲的内存页作为页缓存,并且通过调用 add_to_page_cache_lru 函数把其添加到文件的页缓存和 LRU 队列中。我们来看看 add_to_page_cache_lru 函数的实现:

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
                           pgoff_t offset, gfp_t gfp_mask)
{
    // 1. 把页缓存添加到文件页缓存中
    int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
    if (ret == 0)
        lru_cache_add(page); // 2. 把页缓存添加到 LRU 队列中
    return ret;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

add_to_page_cache_lru 函数主要完成两个工作:

  • 通过调用 add_to_page_cache 函数把页缓存添加到文件页缓存中,也就是添加到 address_space 结构的 page_tree 字段中。
  • 通过调用 lru_cache_add 函数把页缓存添加到 LRU 队列中。LRU 队列用于当系统内存不足时,对页缓存进行清理时使用。
总结

本文主要介绍了 页缓存 的作用和原理,并且介绍了在读取文件数据时对页缓存的处理过程。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/503999
推荐阅读
相关标签
  

闽ICP备14008679号