赞
踩
PLAINTEXT
1 2 3 4 5 6 7 | 中文名称:StockFormer: 混合交易机与预测编码 英文名称:StockFormer: Learning Hybrid Trading Machines with Predictive Coding 作者:Siyu Gao, Yunbo Wang∗, and Xiaokang Yang 机构:MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University 发表时间:IJCAI-23 代码:https://github.com/gsyyysg/StockFormer 地址:https://www.ijcai.org/proceedings/2023/0530.pdf |
这里采用了预测编码模型与强化学习的结合方法。三个独立的预测编码模型分别用于预测短期(1 天)和长期(5 天)的回报率,以及各股票间的动态相关性。在训练预测编码模型的过程中,可获取有价值的潜在状态,并将这些状态组合成一个状态空间,用于训练强化学习模型。
论文带来一些启发:可以将复杂的问题分解为多个简单的部分进行求解,股票数据的特性使得我们可以获得中间过程的目标数据,用于分别训练模型。此外,采用强化学习的方法也消化了股票交易的复杂性,尤其适用于状态空间和动作空间不断变化的情况。
另外,作者开源的代码逻辑清晰,长短适中,也是股票 + 强化学习算法很好的入门工具。
RL 通过与环境的交互来优化决策,在给定的状态下选择最佳的行动(买入、卖出或持有),以最大化长期回报。
实验数据集使用了:使用 CSI-300(沪深 300:China Securities Index 300)、NASDAQ-100(美国)和加密货币市场的数据集。请注意 2019-2021 年是个牛市阶段,所以模型效果可能好于一般情况。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。