赞
踩
锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。
Mysql中的锁,按照锁的粒度分,可以分为以下3类:
1、全局锁:锁定数据库中的所有表。
2、表级锁:每次操作锁住整张表。
3、行级锁:每次操作锁住对应的行数据。
介绍
全局锁就是对整个数据库实例加锁,加锁后的整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。
典型的使用场景就是做全库的逻辑备份,对所有的表进行 行锁定,从而获取一致性视图,保证数据的完整性。
为什么全库逻辑备份,就需要加全就锁呢?
A. 我们一起先来分析一下不加全局锁,可能存在的问题。 假设在数据库中存在这样三张表: tb_stock 库存表,tb_order 订单表,tb_orderlog 订单日 志表。
此时备份出来的数据,是存在问题的。因为备份出来的数据,tb_stock 表与 tb_order 表的数据不一 致(有最新操作的订单信息,但是库存数没减)。 那如何来规避这种问题呢? 此时就可以借助于MySQL的全局锁来解决。
B. 再来分析一下加了全局锁后的情况
语法
1、加全局锁
flush tables with read lock;
2、数据备份
mysqldump -uroot -pxxx db_name -> xxx.sql;
3、释放锁
unlock tables;
存在的问题
数据库中加全局锁,是一个比较重的操作,存在的问题有:
在InnoDB引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致 性数据备份。
mysqldump --single-transaction -uroot -pxxx db_name -> xxx.sql;
介绍
表级锁,每次执行操作时会锁住整张表。锁定粒度大,发生冲突的概率最高,并发度最低。 应用在MyISAM、 InnoDB、BDB等存储引擎中。
表级锁,主要分为3类:
表锁
对于表锁,又可以分为2类:
语法:
1、加锁
lock tables 表名 ... read/write;
2、释放锁
unlock tables; / 客户端断开连接
特点
A. 读锁
左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户端的写。
测试:
B. 写锁
左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。
测试:
结论: 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞 其他客户端的写。
元数据锁
meta data lock , 元数据锁,简写MDL。
MDL 加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL 锁主要作用是维 护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与 DDL冲突,保证读写的正确性。
这里的元数据,大家可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的事务时,是不能够修改这张表的表结构的。 在MySQL5.5 中引入了 MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变 更操作的时候,加MDL写锁(排他)。
常见的SQL操作时,所添加的元数据锁如下:
对应SQL | 锁类型 | 说明 |
lock tables xxx read / write | SHARED_READ_ONLY / SHARED_NO_READ_WRITE | |
select、select . . . lock in share mode | SHARED_READ | 与SHARED_READ、 SHARED_WRITE兼容,与 EXCLUSIVE互斥 |
insert 、update、 delete、select . . . for update | SHARED_WRITE | 与SHARED_READ、 SHARED_WRITE兼容,与 EXCLUSIVE互斥 |
alter table . . . | EXCLUSIVE | 与其他的MDL都互斥 |
演示:
当执行 SELECT、INSERT、UPDATE、DELETE 等语句时,添加的是元数据共享锁(SHARED_READ / SHARED_WRITE),之间是兼容的。
当执行 SELECT 语句时,添加的是元数据共享锁(SHARED_READ),会阻塞元数据排他锁 (EXCLUSIVE),之间是互斥的。
我们可以通过下面的SQL,来查看数据库中的元数据锁的情况:
- select object_type,object_schema,object_name,lock_type,lock_duration
- from performance_schema.metadata_locks ;
我们在操作过程中,可以通过上述的SQL语句,来查看元数据锁的加锁情况。
介绍
为了避免 DML 在执行时,加的行锁与表锁的冲突,在 InnoDB 中引入了意向锁,使得表锁不用检查每行 数据是否加锁,使用意向锁来减少表锁的检查。
假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢,来通过示意图简单分析一 下:
首先客户端一,开启一个事务,然后执行 DML 操作,在执行 DML 语句时,会给涉及到的行加行锁。
当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此时就 会从第一行数据,检查到最后一行数据,效率较低。
有了意向锁之后 :
客户端一,在执行 DML 操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。
而其他客户端,在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加表锁,而不用逐行判断行锁情况了。
分类
对于意向锁,又可以分为2类:
一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。
可以通过以下SQL,查看意向锁及行锁的加锁情况:
- select object_schema,object_name,index_name,lock_type,lock_mode,lock_data
- from performance_schema.data_locks;
演示:
A. 意向共享锁 与 表读锁是兼容的
B. 意向排他锁 与 表读锁、写锁都是互斥的
介绍
行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在 InnoDB存储引擎中。
InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:
行锁
InnoDB实现了以下两种类型的行锁:
两种行锁的兼容情况如下:
常见的SQL语句,在执行时,所加的行锁如下:
SQL | 行锁类型 | 说明 |
INSERT ... | 排他锁 | 自动加锁 |
UPDATE ... | 排他锁 | 自动加锁 |
DELETE ... | 排他锁 | 自动加锁 |
SELECT(正常) | 不加任何锁 | |
SELECT ... LOCK IN SHARE MODE | 共享锁 | 需要手动在SELECT之后加LOCK IN SHARE MODE |
SELECT ... FOR UPDATE | 排他锁 | 需要手动在SELECT之后加FOR UPDATE |
演示:
默认情况下,InnoDB在 REPEATABLE READ 事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。
可以通过以下SQL,查看意向锁及行锁的加锁情况:
- select object_schema,object_name,index_name,lock_type,lock_mode,lock_data
- from performance_schema.data_locks;
示例演示
数据准备:
- CREATE TABLE `stu` (
- `id` int NOT NULL PRIMARY KEY AUTO_INCREMENT,
- `name` varchar(255) DEFAULT NULL,
- `age` int NOT NULL
- ) ENGINE = InnoDB CHARACTER SET = utf8mb4;
-
- INSERT INTO `stu` VALUES (1, 'tom', 1);
- INSERT INTO `stu` VALUES (3, 'cat', 3);
- INSERT INTO `stu` VALUES (8, 'rose', 8);
- INSERT INTO `stu` VALUES (11, 'jetty', 11);
- INSERT INTO `stu` VALUES (19, 'lily', 19);
- INSERT INTO `stu` VALUES (25, 'luci', 25);
- # 演示行锁的时候,我们就通过上面这张表来演示一下。
A. 普通的select语句,执行时,不会加锁。
B. select...lock in share mode,加共享锁,共享锁与共享锁之间兼容。
共享锁与排他锁之间互斥。
客户端一获取的是id为1这行的共享锁,客户端二是可以获取id为3这行的排它锁的,因为不是同一行 数据。 而如果客户端二想获取id为1这行的排他锁,会处于阻塞状态,以为共享锁与排他锁之间互 斥。
C. 排它锁与排他锁之间互斥
当客户端一,执行update语句,会为id为1的记录加排他锁; 客户端二,如果也执行update语句更 新id为1的数据,也要为id为1的数据加排他锁,但是客户端二会处于阻塞状态,因为排他锁之间是互 斥的。 直到客户端一,把事务提交了,才会把这一行的行锁释放,此时客户端二,解除阻塞。
D. 无索引行锁升级为表锁
stu表中数据如下:
我们在两个客户端中执行如下操作:
在客户端一中,开启事务,并执行update语句,更新name为Lily的数据,也就是id为19的记录 。 然后在客户端二中更新id为3的记录,却不能直接执行,会处于阻塞状态,为什么呢?
原因就是因为此时,客户端一,根据name字段进行更新时,name字段是没有索引的,如果没有索引, 此时行锁会升级为表锁(因为行锁是对索引项加的锁,而name没有索引)。
接下来,我们再针对name字段建立索引,索引建立之后,再次做一个测试:
此时我们可以看到,客户端一,开启事务,然后依然是根据name进行更新。而客户端二,在更新id为3 的数据时,更新成功,并未进入阻塞状态。 这样就说明,我们根据索引字段进行更新操作,就可以避免行锁升级为表锁的情况。
间隙锁 & 临键锁
默认情况下,InnoDB在 REPEATABLE READ 事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。
注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会 阻止另一个事务在同一间隙上采用间隙锁。
示例演示
A. 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。
B. 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。
介绍分析一下:
我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值 为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 并不是,因为是非唯一索引,这个 结构中可能有多个18的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也 就是29)。此时会对18加临键锁,并对29之前的间隙加锁。
C. 索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。
查询的条件为id>=19,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部 分: [19] (19,25] (25,+∞]
所以数据库数据在加锁时,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷的临 键锁(正无穷及之前的间隙)。
1、概述
2、全局锁
3、表级锁
4、行级锁
注:本篇学习自B站黑马的Mysql进阶部分。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。