当前位置:   article > 正文

Bag-of-words模型

bag-of-words模型

转自http://blog.csdn.net/wsj998689aa/article/details/47089153

  • Bag-of-words模型简介

Bag-of-words模型是信息检索领域常用的文档表示方法。在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单词是否出现。也就是说,文档中任意一个位置出现的任何单词,都不受该文档语意影响而独立选择的。例如有如下两个文档:

 

     1:Bob likes to play basketball, Jim likes too.

     2:Bob also likes to play football games.

 

    基于这两个文本文档,构造一个词典:

 

     Dictionary = {1:”Bob, 2. like, 3. to, 4. play, 5. basketball, 6. also, 7. football, 8. games, 9. Jim, 10. too}

 

    这个词典一共包含10个不同的单词,利用词典的索引号,上面两个文档每一个都可以用一个10维向量表示(用整数数字0~n(n为正整数)表示某个单词在文档中出现的次数)

 

     1:[1, 2, 1, 1, 1, 0, 0, 0, 1, 1]

     2:[1, 1, 1, 1 ,0, 1, 1, 1, 0, 0]

 

    向量中每个元素表示词典中相关元素在文档中出现的次数(下文中,将用单词的直方图表示)。不过,在构造文档向量的过程中可以看到,我们并没有表达单词在原来句子中出现的次序(这是本Bag-of-words模型的缺点之一,不过瑕不掩瑜甚至在此处无关紧要)。

  • Bag-of-words模型的应用

Bag-of-words模型的适用场合

现在想象在一个巨大的文档集合D,里面一共有M个文档,而文档里面的所有单词提取出来后,一起构成一个包含N个单词的词典,利用Bag-of-words模型,每个文档都可以被表示成为一个N维向量,计算机非常擅长于处理数值向量。这样,就可以利用计算机来完成海量文档的分类过程。

考虑将Bag-of-words模型应用于图像表示。为了表示一幅图像,我们可以将图像看作文档,即若干个“视觉词汇”的集合,同样的,视觉词汇相互之间没有顺序。

               

                  图1 将Bag-of-words模型应用于图像表示

 

由于图像中的词汇不像文本文档中的那样是现成的,我们需要首先从图像中提取出相互独立的视觉词汇,这通常需要经过三个步骤:(1)特征检测,(2)特征表示,(3)单词本的生成,请看下图2: 

    

                 图2 从图像中提取出相互独立的视觉词汇

 

通过观察会发现,同一类目标的不同实例之间虽然存在差异,但我们仍然可以找到它们之间的一些共同的地方,比如说人脸,虽然说不同人的脸差别比较大,但眼睛,嘴,鼻子等一些比较细小的部位,却观察不到太大差别,我们可以把这些不同实例之间共同的部位提取出来,作为识别这一类目标的视觉词汇。

SIFT算法是提取图像中局部不变特征的应用最广泛的算法,因此我们可以用SIFT算法从图像中提取不变特征点,作为视觉词汇,并构造单词表,用单词表中的单词表示一幅图像。

 

Bag-of-words模型应用三步

接下来,我们通过上述图像展示如何通过Bag-of-words模型,将图像表示成数值向量。现在有三个目标类,分别是人脸、自行车和吉他

Bag-of-words模型的第一步是利用SIFT算法,从每类图像中提取视觉词汇,将所有的视觉词汇集合在一起,如下图3所示:

                                               

                      图从每类图像中提取视觉词汇

 

第二步是利用K-Means算法构造单词表K-Means算法是一种基于样本间相似性度量的间接聚类方法,此算法以K为参数,把N个对象分为K个簇,以使簇内具有较高的相似度,而簇间相似度较低。SIFT提取的视觉词汇向量之间根据距离的远近,可以利用K-Means算法将词义相近的词汇合并,作为单词表中的基础词汇,假定我们将K设为4,那么单词表的构造过程如下图4所示:              

             

                 图利用K-Means算法构造单词表

 

第三步是利用单词表的中词汇表示图像。利用SIFT算法,可以从每幅图像中提取很多个特征点,这些特征点都可以用单词表中的单词近似代替,通过统计单词表中每个单词在图像中出现的次数,可以将图像表示成为一个K=4维数值向量。请看下图5:

        

                 图5 每幅图像的直方图表示 

上图5中,我们从人脸、自行车和吉他三个目标类图像中提取出的不同视觉词汇,而构造的词汇表中,会把词义相近的视觉词汇合并为同一类,经过合并,词汇表中只包含了四个视觉单词,分别按索引值标记为1234。通过观察可以看到,它们分别属于自行车、人脸、吉他、人脸类。统计这些词汇在不同目标类中出现的次数可以得到每幅图像的直方图表示我们假定存在误差,实际情况亦不外如此

人脸:  [3,30,3,20]
自行车:[20,3,3,2]
吉他:  [8,12,32,7]

其实这个过程非常简单,就是针对人脸、自行车和吉他这三个文档,抽取出相似的部分(或者词义相近的视觉词汇合并为同一类),构造一个词典,词典中包含4个视觉单词,即Dictionary = {1:”自行车”, 2. “人脸”, 3. “吉他”, 4. “人脸类},最终人脸、自行车和吉他三个文档皆可以用一个4维向量表示,最后根据三个文档相应部分出现的次数画成了上面对应的直方图

需要说明的是,以上过程只是针对三个目标类非常简单的一个示例,实际应用中,为了达到较好的效果,单词表中的词汇数量K往往非常庞大,并且目标类数目越多,对应的K值也越大,一般情况下,K的取值在几百到上千,在这里取K4仅仅是为了方便说明。

 

下面,我们再来总结一下如何利用Bag-of-words模型将一幅图像表示成为数值向量:

  • 第一步:利用SIFT算法从不同类别的图像中提取视觉词汇向量,这些向量代表的是图像中局部不变的特征点;
  • 第二步:将所有特征点向量集合到一块,利用K-Means算法合并词义相近的视觉词汇,构造一个包含K个词汇的单词表;
  • 第三步:统计单词表中每个单词在图像中出现的次数,从而将图像表示成为一个K维数值向量

 


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/621548
推荐阅读
  

闽ICP备14008679号