当前位置:   article > 正文

神经网络 | CNN 与 RNN——深度学习主力军

神经网络 | CNN 与 RNN——深度学习主力军

Hi,大家好,我是半亩花海。本文主要将卷积神经网络(CNN)循环神经网络(RNN)这两个深度学习主力军进行对比。我们知道,从应用方面上来看,CNN 用于图像识别较多,而 RNN 用于语言处理较多。CNN 如同眼睛一样,正是目前机器用来识别对象的图像处理器。相应地,RNN 犹如耳朵和嘴巴,用于解析语言模式的数学引擎。


目录

一、卷积神经网络

1. 特征

2. 结构

二、循环神经网络

1. 网络结构

2. 应对梯度消失问题

三、CNN 与 RNN 的异同点

1. 相同点

2. 不同点

四、CNN+RNN 的组合方式


我们可以通过形象的假设来理解这俩个神经网络模型:

  • CNN 的假设——人类的视觉总是会关注视线内特征最明显的点。
  • RNN 的假设——事物的发展是按照时间序列展开的(前一刻发生的事物会对未来的事情的发展产生影响)。

卷积神经网络:通常用于计算机视觉中,可以用来图像识别图像分类。CNN 用于提取图像的空间特征,通过不断的卷积和池化操作实现特征提取和降维。

循环神经网络:通常用于自然语言处理语音识别中,可以用来处理间序列数据。RNN 的主要思想是把前面的信息传递到后面,这样网络就可以利用之前的信息做出预测,能够处理序列中每个时间步的数据。


一、卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有局部连接、权重共享等特性的深层前馈神经网络。

1. 特征

  • 局部连接:在卷积层(假设是第
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/76055
推荐阅读
相关标签