赞
踩
文本和图像,文本的语义信息映射成词向量,形成词典,嵌入到n维空间。
图片内容信息提取特征,形成n维向量,嵌入到n维空间。
文本和图像的特征距离要尽量近一点,这样文本信息和图像内容信息特征相似。可以根据一种模态输入获得另一模态类型的输出。
1. 目的:输入彩色RGB图像,输出检测的物体。
2. 过程:分类+定位
3. 最新的目标检测技术:文本 + 图像,制定类别检测
4. 现有方法分类:
1. 一步法(SSD、YOLO):仅使用一个卷积神经网络CNN直接预测不同目标和位置
2. 两步法(R-CNN、Fast R-CNN、Faster R-CNN)
step1:先生成候选框(利用Region Proposal Network(RPN))
step2:根据候选框分类+精调
![R-CNN论文](https://img-blog.csdnimg.cn/direct/587d375e082d4b0aa1605822a0031212.png #pic_center=50%x50%)
R-CNN算法步骤
Fast R-CNN是R-CNN作者在原有基础上的改善,对于推理速度,准确率,训练时间都远远超于R-CNN。
Fast R-CNN算法步骤
Fast R-CNN是R-CNN作者在原有基础上的改善,骨干网络使用VGG16,对于推理速度,准确率,训练时间成倍提高。
Faster R-CNN最好能够自己执行代码运行一下,需要重点掌握。
Faster R-CNN 算法步骤
RPN使用3x3卷积的目的:通过3x3的卷积层获得目标得分和边界回归偏移,判断特征映射图中的是不是我们候选框的目标。
根据目标得分判断是不是我们需要的目标,调整我们的锚点框(3x3卷积层反向画在原图片上的框),如果该锚点框里面是目标,那么它就升级为候选框,否则的话就不画。
每个位置(滑动窗口)在原图上都对应33=9anchor。
在候选框筛选过程中,去掉边缘anchor和IOU重叠,就会删除掉很多现有的候选框,以1000x600x3为例,最终剩下2k候选框。
参数回归器和分类器用的是卷积,不是全连接层,原因是:11的就卷积就相当于全连接层。
最后,还是需要提醒大家看原文和源码~深入理解原理。
参考文献:陈万军(西安理工大学)——《目标检测》课件
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。