赞
踩
全人工对语料做词性标注就像蚂蚁一样忙忙碌碌,是非常耗费声明的,如果有一个机器能够完全自动化地,给它一篇语料,它迅速给你一片标注,这样才甚好,本节就来讨论一下怎么样能无需动手对语料做自动化的词性标注
请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址
先插入个tips,先介绍一下一些 nltk 库的使用如下:
- >>> import nltk
- >>> porter = nltk.PorterStemmer()
- >>> porter.stem('lying')
- u'lie'
- >>> import nltk
- >>> text = nltk.word_tokenize("And now for something completely different")
- >>> nltk.pos_tag(text)
- [('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]
其中CC是连接词,RB是副词,IN是介词,NN是名次,JJ是形容词
这是一句完整的话,实际上pos_tag是处理一个词序列,会根据句子来动态判断,比如:
>>> nltk.pos_tag(['i','love','you'])
[('i', 'NN'), ('love', 'VBP'), ('you', 'PRP')]
这里的love识别为动词
而:
>>> nltk.pos_tag(['love','and','hate'])
[('love', 'NN'), ('and', 'CC'), ('hate', 'NN')]
这里的love识别为名词
nltk中多数都是英文的词性标注语料库,如果我们想自己标注一批语料库该怎么办呢?
nltk提供了比较方便的方法:
- >>> tagged_token = nltk.tag.str2tuple('fly/NN')
- >>> tagged_token
- ('fly', 'NN')
这里的nltk.tag.str2tuple可以把fly/NN这种字符串转成一个二元组,事实上nltk的语料库中都是这种字符串形式的标注,那么我们如果把语料库标记成:
- >>> sent = '我/NN 是/IN 一个/AT 大/JJ 傻×/NN'
- >>> [nltk.tag.str2tuple(t) for t in sent.split()]
- [('\xe6\x88\x91', 'NN'), ('\xe6\x98\xaf', 'IN'), ('\xe4\xb8\x80\xe4\xb8\xaa', 'AT'), ('\xe5\xa4\xa7', 'JJ'), ('\xe5\x82\xbb\xc3\x97', 'NN')]
这么说来,中文也是可以支持的,恩~
这么说来,中文也是可以支持的,恩~,关于中文部分可以参考我的另一篇文章,
https://blog.csdn.net/smilejiasmile/article/details/80958010
面对一片新的语料库(比如我们从未处理过中文,只有一批批的中文语料,现在让我们做词性自动标注),如何实现词性自动标注?有如下几种标注方法:
默认标注器:不管什么词,都标注为频率最高的一种词性。比如经过分析,所有中文语料里的词是名次的概率是13%最大,那么我们的默认标注器就全部标注为名次。这种标注器一般作为其他标注器处理之后的最后一道门,即:不知道是什么词?那么他是名次。默认标注器用DefaultTagger来实现,具体用法如下:
- # coding:utf-8
-
- import sys
- reload(sys)
- sys.setdefaultencoding( "utf-8" )
- import nltk
-
- default_tagger = nltk.DefaultTagger('NN')
- raw = '我 累 个 去'
- tokens = nltk.word_tokenize(raw)
- tags = default_tagger.tag(tokens)
- print tags
执行后输出:
[('\xe6\x88\x91', 'NN'), ('\xe7\xb4\xaf', 'NN'), ('\xe4\xb8\xaa', 'NN'), ('\xe5\x8e\xbb', 'NN')]
正则表达式标注器:满足特定正则表达式的认为是某种词性,比如凡是带“们”的都认为是代词(PRO)。正则表达式标注器通RegexpTagge实现,用法如下:
- pattern = [(r'.*们$','PRO')]
- tagger = nltk.RegexpTagger(pattern)
- print tagger.tag(nltk.word_tokenize('我们 累 个 去 你们 和 他们 啊'))
执行后输出:
[('\xe6\x88\x91\xe4\xbb\xac', 'PRO'), ('\xe7\xb4\xaf', None), ('\xe4\xb8\xaa', None), ('\xe5\x8e\xbb', None), ('\xe4\xbd\xa0\xe4\xbb\xac', 'PRO'), ('\xe5\x92\x8c', None), ('\xe4\xbb\x96\xe4\xbb\xac', 'PRO'), ('\xe5\x95\x8a', None)]
查询标注器:找出最频繁的n个词以及它的词性,然后用这个信息去查找语料库,匹配的就标记上,剩余的词使用默认标注器(回退)。这一般使用一元标注的方式,见下面。
一元标注:基于已经标注的语料库做训练,然后用训练好的模型来标注新的语料,使用方法如下:
- tagged_sents = [[(u'我', u'PRO'), (u'小兔', u'NN')]]
- unigram_tagger = nltk.UnigramTagger(tagged_sents)
- sents = brown.sents(categories='news')
- sents = [[u'我', u'你', u'小兔']]
- tags = unigram_tagger.tag(sents[0])
- print tags
输出结果如下:
[(u'\u6211', u'PRO'), (u'\u4f60', None), (u'\u5c0f\u5154', u'NN')]
这里的tagged_sents是用于训练的语料库,我们也可以直接用已有的标注好的语料库,比如:
brown_tagged_sents = brown.tagged_sents(categories='news')
二元标注和多元标注:一元标注指的是只考虑当前这个词,不考虑上下文。二元标注器指的是考虑它前面的词的标注,用法只需要把上面的UnigramTagger换成BigramTagger。同理三元标注换成TrigramTagger
组合标注器:为了提高精度和覆盖率,我们对多种标注器组合,比如组合二元标注器、一元标注器和默认标注器,如下:
- t0 = nltk.DefaultTagger('NN')
- t1 = nltk.UnigramTagger(train_sents, backoff=t0)
- t2 = nltk.BigramTagger(train_sents, backoff=t1)
标注器的存储:训练好的标注器为了持久化,可以存储到硬盘,具体方法如下:
- >>> from cPickle import dump
- >>> output = open('t2.pkl', 'wb')
- >>> dump(t2, output, -1)
- >>> output.close()
使用时也可以加载,如下:
- >>> from cPickle import load
- >>> input = open('t2.pkl', 'rb')
- >>> tagger = load(input)
- >>> input.close()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。