当前位置:   article > 正文

故障样本诊断——python_故障诊断中,如何用python画图

故障诊断中,如何用python画图

今天写的,主要有:

(1)正常的图片,故障的图片,先求LBP特征。因为LBP有光照不变性和旋转不变性
(2)把图片分成上下两部分,这样可以使故障的部分显得更显著
(3)融合PSRN和SSIM两种方法,这样会有更好的鲁邦性

"""

"""
import os
import cv2
import time
import numpy as np
from skimage.transform import rotate
from skimage.feature import local_binary_pattern
from skimage import data, io
from skimage.color import label2rgb
import skimage
import math
####
def compute_psnr(img1, img2):
    if isinstance(img1,str):
        img1=io.imread(img1)
    if isinstance(img2,str):
        img2=io.imread(img2)
    mse = np.mean( (img1/255. - img2/255.) ** 2 )
    if mse < 1.0e-10:
       return 1000000000000
    PIXEL_MAX = 1
    psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
    return mse, psnr

def ssim(img1, img2):
    C1 = (0.01 * 255) ** 2
    C2 = (0.03 * 255) ** 2
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    # kernel = cv2.getGaussianKernel(11, 1.5)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())
    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1 ** 2
    mu2_sq = mu2 ** 2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 =
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/414051
推荐阅读
相关标签
  

闽ICP备14008679号