赞
踩
今天写的,主要有:
(1)正常的图片,故障的图片,先求LBP特征。因为LBP有光照不变性和旋转不变性
(2)把图片分成上下两部分,这样可以使故障的部分显得更显著
(3)融合PSRN和SSIM两种方法,这样会有更好的鲁邦性
""" """ import os import cv2 import time import numpy as np from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data, io from skimage.color import label2rgb import skimage import math #### def compute_psnr(img1, img2): if isinstance(img1,str): img1=io.imread(img1) if isinstance(img2,str): img2=io.imread(img2) mse = np.mean( (img1/255. - img2/255.) ** 2 ) if mse < 1.0e-10: return 1000000000000 PIXEL_MAX = 1 psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) return mse, psnr def ssim(img1, img2): C1 = (0.01 * 255) ** 2 C2 = (0.03 * 255) ** 2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) # kernel = cv2.getGaussianKernel(11, 1.5) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1 ** 2 mu2_sq = mu2 ** 2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 =
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。