当前位置:   article > 正文

快来领取!最佳大模型技术知识图谱学习路径!首创!

大模型学习路线

▼最近直播超级多,预约保你有收获

近期直播:《LLM推理架构设计和部署落地实战

 1

LLM 大模型技术知识最佳学习路径

昨天发布了《LLM 大模型技术知识图谱》后,很多同学纷纷在后台留言:“玄姐,LLM 大模型的学习路径是怎么样?”。

今天我们就来剖析下 LLM 大模型技术知识的学习路径。如果你是一个 LLM 大模型的“技术小白”,我们建议的学习路径如下:

第一步:学习大模型内核架构,对 Transformer 神经网络架构有个大致的了解,能够搞懂 :LLM 大模型是如何预测下一个 token 的、涌现是如何产生的、幻觉问题如何避免、在线推理的性能问题如何解决、LLM 大模型的选型。

第二步:学习大模型开发 API,对 LLM 大模型的能力有个详细了解,能够搞懂:LLM 都提供了哪些功能、有哪些 API 接口以及对应的用法。就可以开发基于大模型的应用程序了。

第三步:学习开发框架,对主流的开发框架(比如:LangChain)有个大致的了解,能够掌握:开发框架本身的技术原理、开发框架选型、开发框架提供的功能、基于开发框架快速开发大模型应用程序。

第四步:学习向量数据库,向量数据库负责应用程序的数据存储,能够掌握:向量数据库的基础架构、向量数据库选型、向量数据库的索引建立、向量数据库的查询接口、向量数据库的性能优化等。

第五步:学习 AI 编程,快速提升编码学习,能够掌握:AI 编程框架的技术架构原型、AI 编程产品的选型、AI 编程功能的灵活应用。

学习完以上5步,就能够开发出一个 AGI 时代的新应用程序了,如果开发的这个应用程序要性能好、要健壮、要功能丰富等,就要继续学习以下的 LLM 大模型的技术知识。

第六步:学习 AI Agent,AI Agent 是 AGI 时代新的应用程序形态,类比移动互联网时代的 APP 形态,能够掌握:AI Agent 的5个技术组件(LLM、Planning、Memory、Tools Use、Action)、AI Agent 的开发框架(LangChain)、AI Agent Function Calling 函数调用。

第七步:学习缓存,LLM 大模型的推理成本比较高,推理速度也高达秒级,缓存是降低大模型推理成本和提升推理速度的一剂良药。能够掌握:缓存的两种匹配方法、缓存的计算原理、基于 GPTCache 的缓存方法、提升缓存命中率的方法。

第八步:学习算力,算力是大模型以及上层应用的资源,能够掌握:业界主流的算力产品、算力如何计算评估、算力如何选型等。

通过以上三步的学习,就能够构建出一个企业级的 AI Agent 应用,可以是增量的新 AI Agent 应用(比如:业务助手类),也是和已有业务结合的存量 AI Agent 应用(比如:智能客服、搜索、推荐、广告、风控、数据分析、BI等),并能能够对 AI Agent 的运行资源做出合适的评估量化。

第九步:学习 RAG(Retrieval Augmented Generation),RAG 是 LLM 大模型能力增强的一种方式,能够掌握:知识库的向量化构建技术、基于向量数据库的检索技术、基于 Prompt 的大模型增强技术。

第十步:学习大模型微调(Fine-tuning),微调也是 LLM 大模型能力增强的另外一种方式,能够掌握:微调的常用算法、微调的算法选型、微调的高效 PEFT 框架、微调的数据工程技术、微调的训练策略。

以上两步涉及的技术实际上是企业级私有大模型的构建技术,学会以上两步的学习,就能够构建企业级私有专用大模型了。

第十一步:学习大模型预训练,大模型预训练本身由于涉及雄厚的资金壁垒,注定是“大厂”的游戏,但是大模型预训练本身的技术很值得我们学习,能够掌握:预训练数据获取技术、预训练数据工程技术、预训练策略设计、预训练分布式并行技术等。

第十二步:学习 LLMOps,LLMOps 是在 MLOps 基础之上,覆盖了大模型以及应用的开发、调试、测试、部署、调优、运维治理等一套完整的流程,能够掌握:数据工具、模型工具、部署工具、迭代工具等。

通过以上12个步骤的学习,就能够深度应用 LLM 大模型技术,高效开发 AGI时代企业级新的应用程序,做一名高薪的 AI 大模型开发工程师。

为了帮助每一个程序员掌握以上 AI 大模型开发的12项技能,我们准备了一系列免费直播干货,覆盖以上大模型架构内核、Fine-tuning 微调、RAG、LangChain 开发框架、缓存、Agent 开发、向量数据库、LLMOps 部署治理等12项核心技术,扫码一键免费全部预约免费领取

e234e20c651c8162bc50a5379d855d5b.png

END

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/428349
推荐阅读
相关标签
  

闽ICP备14008679号