赞
踩
随机游走(Random Walk,缩写为 RW),又称随机游动或随机漫步,是一种数学统计模型,它是一连串的轨迹所组成,其中每一次都是随机的。它能用来表示不规则的变动形式,如同一个人酒后乱步,所形成的随机过程记录。因此,它是记录随机活动的基本统计模型。
Random Walk 是随机过程(Stochastic Process)的一个重要组成部分,通常描述的是最简单的一维 Random Walk 过程。下面给出一个例子来说明:考虑在数轴原点处有一只蚂蚁,它从当前位置(记为x(t) )出发,在下一个时刻( x(t+1))以 的概率向前走一步(即 x(t+1)= x(t)+1),或者以 的概率向后走一步(即 x(t+1)= x(t)-1),这样蚂蚁每个时刻到达的点序列 就构成一个一维随机游走过程。
本质上 Random Walk 是一种随机化的方法,在实际上生活中,例如醉汉行走的轨迹、花粉的布朗运动、证券的涨跌等都与 Random Walk 有密不可分的关系。Random Walk已经被成功地应用到数学,物理,化学,经济等各种领域。当前研究者们已经开始将 Random Walk 应用到信息检索、图像分割等领域,并且取得了一定的成果,其中一个突出的例子就是 Brin 和 Page 利用基于 Random Walk 的 PageRank 技术创建了 Google 公司。
随机游走的形式有:
随机游走(random walk)矩阵可以看做是马尔科夫链的一种特例。
喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家。
一维、二维随机游走过程中,只要时间足够长,我们最终总能回到出发点;
三维网格中随机游走,最终能回到出发点的概率只有大约 34%;
四维网格中随机游走,最终能回到出发点的概率是 19.3% ;
八维空间中,最终能回到出发点的概率只有 7.3% ;
定理是著名数学家波利亚(George Pólya)在 1921 年证明的。
随机游走是现实生活中常见的一种模型:
气体分子的运动、滴入水中的墨水 、气味的扩散、醉汉行走轨迹、花粉的布朗运动、证券的涨跌、抛硬币…
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。