Fuzzy C-Means聚合算法在图像分割(segmentation)和图像视觉处理中常常被用到聚合算法之

一本文是完全基于JAVA语言实现Fuzzy C-Means聚合算法,并可以运用到图像处理中实现简

单的对象提取。


一:数学原理

在解释数学原理之前,请先看看这个链接算是热身吧

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html

看不懂没关系。我的解释足够详细,小学毕业都可以学会,本人就是小学毕业。

Fuzzy C-means算法主要是比较RGB空间的每个像素值与Cluster中的每个中心点值,最终给

每个像素指派一个值(0~1之间)说明该像素更接近于哪里Cluster的中心点,模糊规则是该像

素对所有cluster的值之和为1。简单的举例:假设图像中有三个聚类cluster1,cluster2,cluster3,

像素A对三个聚类的值分别为a1, a2, a3, 根据模糊规则a1 + a2 + a3 = 1。更进一步,如果a1

最大,则该像素比较接近于Cluster1。计算总的对象值J


二:算法流程

初始输入参数:

a.      指定的聚类个数numberOfClusters,

b.      指定的最大循环次数maxIteration

c.      指定的最小终止循环差值deltaValue

大致流程如下:

1.      初始化所有像素点值与随机选取每个Cluster的中心点,初始化每个像素点P[i]对应

Cluster的模糊值p[i][k]并计算cluster index。

2.      计算对象值J

3.      计算每个Cluster的颜色值,产生新的图像像素

4.      计算每个像素的对应每个cluster的模糊值,更新每个像素的Cluster Index

5.      再次计算对象值J,并与第二步的对象值相减,如果差值小于deltaValue或者达到最大

循环数,停止计算输出结果图像,否则继续2 ~ 4

三:关键代码解析

欧几里德距离计算方法如下:

private double calculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)  { 	// int pa = (p.getPixelColor() >> 24) & 0xff;     int pr = (p.getPixelColor() >> 16) & 0xff;     int pg = (p.getPixelColor() >> 8) & 0xff;     int pb = p.getPixelColor() & 0xff;     // int ca = (c.getPixelColor() >> 24) & 0xff;     int cr = (c.getPixelColor() >> 16) & 0xff;     int cg = (c.getPixelColor() >> 8) & 0xff;     int cb = c.getPixelColor() & 0xff;          return Math.sqrt(Math.pow((pr - cr), 2.0) + Math.pow((pg - cg), 2.0) + Math.pow((pb - cb), 2.0)); }

计算每个像素与每个Cluster的Fuzzy数值的代码如下:

public void stepFuzzy() {     for (int c = 0; c < this.clusters.size(); c++)     {         for (int h = 0; h < this.points.size(); h++)         {              double top;             top = calculateEuclideanDistance(this.points.get(h), this.clusters.get(c));             if (top < 1.0) top = Eps;              // sumTerms is the sum of distances from this data point to all clusters.             double sumTerms = 0.0;              for (int ck = 0; ck < this.clusters.size(); ck++)             {                 sumTerms += top / calculateEuclideanDistance(this.points.get(h), this.clusters.get(ck));              }             // Then the membership value can be calculated as...             fuzzyForPixels[h][c] = (double)(1.0 / Math.pow(sumTerms, (2 / (this.fuzzy - 1))));          }     };       this.recalculateClusterMembershipValues(); }

计算并更新每个像素的Cluster index的代码如下:

private void recalculateClusterMembershipValues()  {      for (int i = 0; i < this.points.size(); i++)    {        double max = 0.0;        double min = 0.0;        double sum = 0.0;        double newmax = 0;        ClusterPoint p = this.points.get(i);        //Normalize the entries        for (int j = 0; j < this.clusters.size(); j++)        {            max = fuzzyForPixels[i][j] > max ? fuzzyForPixels[i][j] : max;            min = fuzzyForPixels[i][j] < min ? fuzzyForPixels[i][j] : min;        }        //Sets the values to the normalized values between 0 and 1        for (int j = 0; j < this.clusters.size(); j++)        {     	   fuzzyForPixels[i][j] = (fuzzyForPixels[i][j] - min) / (max - min);            sum += fuzzyForPixels[i][j];        }        //Makes it so that the sum of all values is 1         for (int j = 0; j < this.clusters.size(); j++)        {     	   fuzzyForPixels[i][j] = fuzzyForPixels[i][j] / sum;            if (Double.isNaN(fuzzyForPixels[i][j]))            {         	   fuzzyForPixels[i][j] = 0.0;            }            newmax = fuzzyForPixels[i][j] > newmax ? fuzzyForPixels[i][j] : newmax;        }        // ClusterIndex is used to store the strongest membership value to a cluster, used for defuzzification         p.setClusterIndex(newmax);      }; }

四:运行效果


五:算法源代码

FuzzyCMeansProcessor - 算法类

package com.gloomyfish.segmentation.fuzzycmeans;  import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; import java.util.Random;  import com.gloomyfish.filter.study.AbstractBufferedImageOp;  public class FuzzyCMeansProcessor extends AbstractBufferedImageOp { 	 	private List<ClusterPoint> points; 	private List<ClusterCentroid> clusters; 	private BufferedImage originalImage; 	private BufferedImage processedImage; 	private double Eps = Math.pow(10, -5);      private double[][] fuzzyForPixels;          // Gets or sets objective function     private double numObj;          public void setObj(double j) {     	this.numObj = j;     }          public double getObj() {     	return this.numObj;     } 	 	private float fuzzy; // default is 2 	private int numCluster; // number of clusters in image 	 	public BufferedImage getResultImage() 	{ 		return this.processedImage; 	} 	 	public FuzzyCMeansProcessor(/*List<ClusterPoint> points, List<ClusterCentroid> clusters, */float fuzzy, BufferedImage myImage, int numCluster) 	{         points = new ArrayList<ClusterPoint>();          int width = myImage.getWidth();         int height = myImage.getHeight();         int index = 0;         int[] inPixels = new int[width*height];         myImage.getRGB( 0, 0, width, height, inPixels, 0, width );         for (int row = 0; row < myImage.getHeight(); ++row)         {             for (int col = 0; col < myImage.getWidth(); ++col)             {             	index = row * width + col;             	int color = inPixels[index];                 points.add(new ClusterPoint(row, col, color));              }         }            clusters = new ArrayList<ClusterCentroid>();                 //Create random points to use a the cluster centroids         Random random = new Random();         for (int i = 0; i < numCluster; i++)         {             int randomNumber1 = random.nextInt(width);             int randomNumber2 = random.nextInt(height);             index = randomNumber2 * width + randomNumber1;             clusters.add(new ClusterCentroid(randomNumber1, randomNumber2, inPixels[index]));          }                  this.originalImage = myImage;         this.fuzzy = fuzzy;         this.numCluster = numCluster;                  double diff;          // Iterate through all points to create initial U matrix         fuzzyForPixels = new double[this.points.size()][this.clusters.size()];         for (int i = 0; i < this.points.size(); i++)         {             ClusterPoint p = points.get(i);             double sum = 0.0;              for (int j = 0; j < this.clusters.size(); j++)             {                 ClusterCentroid c = this.clusters.get(j);                 diff = Math.sqrt(Math.pow(calculateEuclideanDistance(p, c), 2.0));                 fuzzyForPixels[i][j] = (diff == 0) ? Eps : diff;                 sum += fuzzyForPixels[i][j];             }          }                  // re-calculate the membership value for one point of all clusters, and make suer it's sum of value is 1         recalculateClusterMembershipValues();          	} 	     public void calculateClusterCentroids()     {         for (int j = 0; j < this.clusters.size(); j++)         {             ClusterCentroid clusterCentroid = this.clusters.get(j);                          double l = 0.0;             clusterCentroid.setRedSum(0);             clusterCentroid.setBlueSum(0);             clusterCentroid.setGreenSum(0);             clusterCentroid.setMemberShipSum(0);             double redSum = 0;             double greenSum = 0;             double blueSum = 0;             double memebershipSum = 0;             double pixelCount = 1;              for (int i = 0; i < this.points.size(); i++)             {                              ClusterPoint p = this.points.get(i);                 l = Math.pow(fuzzyForPixels[i][j], this.fuzzy);         		int ta = (p.getPixelColor() >> 24) & 0xff;                 int tr = (p.getPixelColor() >> 16) & 0xff;                 int tg = (p.getPixelColor() >> 8) & 0xff;                 int tb = p.getPixelColor() & 0xff;                 redSum += l * tr;                 greenSum += l * tg;                 blueSum += l * tb;                 memebershipSum += l;                  if (fuzzyForPixels[i][j] == p.getClusterIndex())                 {                 	pixelCount += 1;                 }             }                          int clusterColor = (255 << 24) | ((int)(redSum / memebershipSum) << 16) | ((int)(greenSum / memebershipSum) << 8) | (int)(blueSum / memebershipSum);             clusterCentroid.setPixelColor(clusterColor);          }          //update the original image         // Bitmap tempImage = new Bitmap(myImageWidth, myImageHeight, PixelFormat.Format32bppRgb);         BufferedImage tempImage = createCompatibleDestImage( originalImage, null );         int width = tempImage.getWidth();         int height = tempImage.getHeight();         int index = 0;         int[] outPixels = new int[width*height];                  for (int j = 0; j < this.points.size(); j++)         {             for (int i = 0; i < this.clusters.size(); i++)             {                 ClusterPoint p = this.points.get(j);                 if (fuzzyForPixels[j][i] == p.getClusterIndex())                 {                 	int row = (int)p.getX(); // row                 	int col = (int)p.getY(); // column                 	index = row * width + col;                 	outPixels[index] = this.clusters.get(i).getPixelColor();                 }             }         }                  // fill the pixel data         setRGB( tempImage, 0, 0, width, height, outPixels );         processedImage = tempImage;     }          /// <summary>     /// Perform one step of the algorithm     /// </summary>     public void stepFuzzy()     {         for (int c = 0; c < this.clusters.size(); c++)         {             for (int h = 0; h < this.points.size(); h++)             {                  double top;                 top = calculateEuclideanDistance(this.points.get(h), this.clusters.get(c));                 if (top < 1.0) top = Eps;                  // sumTerms is the sum of distances from this data point to all clusters.                 double sumTerms = 0.0;                  for (int ck = 0; ck < this.clusters.size(); ck++)                 {                     sumTerms += top / calculateEuclideanDistance(this.points.get(h), this.clusters.get(ck));                  }                 // Then the membership value can be calculated as...                 fuzzyForPixels[h][c] = (double)(1.0 / Math.pow(sumTerms, (2 / (this.fuzzy - 1))));              }         };           this.recalculateClusterMembershipValues();     } 	     public double calculateObjectiveFunction()     {         double Jk = 0.0;          for (int i = 0; i < this.points.size();i++)         {             for (int j = 0; j < this.clusters.size(); j++)             {                 Jk += Math.pow(fuzzyForPixels[i][j], this.fuzzy) * Math.pow(this.calculateEuclideanDistance(points.get(i), clusters.get(j)), 2);             }         }         return Jk;     }      	 	private void recalculateClusterMembershipValues()  	{ 	 	    for (int i = 0; i < this.points.size(); i++) 	   { 	       double max = 0.0; 	       double min = 0.0; 	       double sum = 0.0; 	       double newmax = 0; 	       ClusterPoint p = this.points.get(i); 	       //Normalize the entries 	       for (int j = 0; j < this.clusters.size(); j++) 	       { 	           max = fuzzyForPixels[i][j] > max ? fuzzyForPixels[i][j] : max; 	           min = fuzzyForPixels[i][j] < min ? fuzzyForPixels[i][j] : min; 	       } 	       //Sets the values to the normalized values between 0 and 1 	       for (int j = 0; j < this.clusters.size(); j++) 	       { 	    	   fuzzyForPixels[i][j] = (fuzzyForPixels[i][j] - min) / (max - min); 	           sum += fuzzyForPixels[i][j]; 	       } 	       //Makes it so that the sum of all values is 1  	       for (int j = 0; j < this.clusters.size(); j++) 	       { 	    	   fuzzyForPixels[i][j] = fuzzyForPixels[i][j] / sum; 	           if (Double.isNaN(fuzzyForPixels[i][j])) 	           { 	        	   fuzzyForPixels[i][j] = 0.0; 	           } 	           newmax = fuzzyForPixels[i][j] > newmax ? fuzzyForPixels[i][j] : newmax; 	       } 	       // ClusterIndex is used to store the strongest membership value to a cluster, used for defuzzification 	        p.setClusterIndex(newmax); 	     }; 	}  	private double calculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)  	{ 		// int pa = (p.getPixelColor() >> 24) & 0xff; 	    int pr = (p.getPixelColor() >> 16) & 0xff; 	    int pg = (p.getPixelColor() >> 8) & 0xff; 	    int pb = p.getPixelColor() & 0xff; 	    // int ca = (c.getPixelColor() >> 24) & 0xff; 	    int cr = (c.getPixelColor() >> 16) & 0xff; 	    int cg = (c.getPixelColor() >> 8) & 0xff; 	    int cb = c.getPixelColor() & 0xff; 	     	    return Math.sqrt(Math.pow((pr - cr), 2.0) + Math.pow((pg - cg), 2.0) + Math.pow((pb - cb), 2.0)); 	}  	@Override 	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		return processedImage; 	}  } 
ClusterPoint- 存储图像像素点对象

package com.gloomyfish.segmentation.fuzzycmeans;  public class ClusterPoint { 	private double x; 	private double y; 	private int pixelColor; 	private int originalPixelColor; 	private double clusterIndex; 	     public ClusterPoint(double x, double y, int col) 	{ 		this.x = x;         this.y = y;         this.pixelColor = col;         this.originalPixelColor = col;         this.clusterIndex = -1; 	}      	public double getX() { 		return x; 	}  	public void setX(double x) { 		this.x = x; 	}  	public double getY() { 		return y; 	}  	public void setY(double y) { 		this.y = y; 	}  	public int getPixelColor() { 		return pixelColor; 	}  	public void setPixelColor(int pixelColor) { 		this.pixelColor = pixelColor; 	}  	public int getOriginalPixelColor() { 		return originalPixelColor; 	}  	public void setOriginalPixelColor(int originalPixelColor) { 		this.originalPixelColor = originalPixelColor; 	}  	public double getClusterIndex() { 		return clusterIndex; 	}  	public void setClusterIndex(double clusterIndex) { 		this.clusterIndex = clusterIndex; 	}  } 
ClusterCentroid - 存储Cluster信息对象

package com.gloomyfish.segmentation.fuzzycmeans;  public class ClusterCentroid {  	private double x; 	private double y; 	private int pixelColor; 	private double redSum; 	private double greenSum; 	private double blueSum; 	private double memberShipSum; 	private int originalPixelColor; 	     public ClusterCentroid(double x, double y, int color)     {     	this.x = x;     	this.y = y;     	this.originalPixelColor = color;     	this.pixelColor = color;     }      	public double getX() { 		return x; 	}  	public void setX(double x) { 		this.x = x; 	}  	public double getY() { 		return y; 	}  	public void setY(double y) { 		this.y = y; 	}  	public int getPixelColor() { 		return pixelColor; 	}  	public void setPixelColor(int pixelColor) { 		this.pixelColor = pixelColor; 	}  	public double getRedSum() { 		return redSum; 	}  	public void setRedSum(double redSum) { 		this.redSum = redSum; 	}  	public double getGreenSum() { 		return greenSum; 	}  	public void setGreenSum(double greenSum) { 		this.greenSum = greenSum; 	}  	public double getBlueSum() { 		return blueSum; 	}  	public void setBlueSum(double blueSum) { 		this.blueSum = blueSum; 	}  	public double getMemberShipSum() { 		return memberShipSum; 	}  	public void setMemberShipSum(double memberShipSum) { 		this.memberShipSum = memberShipSum; 	}  	public int getOriginalPixelColor() { 		return originalPixelColor; 	}  	public void setOriginalPixelColor(int originalPixelColor) { 		this.originalPixelColor = originalPixelColor; 	}  }

算法调用:

  int numClusters = 2; // (int)numericUpDown2.Value;   int maxIterations = 20; //(int)numericUpDown3.Value;   double accuracy = 0.00001; // (double)numericUpDown4.Value;   FuzzyCMeansProcessor alg = new FuzzyCMeansProcessor(numClusters, sourceImage, numClusters);   int k = 0;   do   {       k++;       alg.setObj(alg.calculateObjectiveFunction());       alg.calculateClusterCentroids();       alg.stepFuzzy();       double Jnew = alg.calculateObjectiveFunction();       System.out.println("Run method accuracy of delta value = " + Math.abs(alg.getObj() - Jnew));       if (Math.abs(alg.getObj() - Jnew) < accuracy) break;   }   while (maxIterations > k);   resultImage = alg.getResultImage();   this.repaint(); }

六:Fuzzy C-means不足之处

需要提供额外的参数,不能自动识别Cluster,运行时间比较长。

博客从本月开始更新,请关注!!谢谢谢!