当前位置:   article > 正文

Positional Encoding 机制

positional encoding

温情藏匿于外冷内热之中,

但那些看起来冰冷的代码,

也能组合成最浪漫优美的情话。

Positional Encoding

到目前为止,transformer模型中还缺少一种解释输入序列中单词顺序的方法。为了处理这个问题,transformer给encoder层和decoder层的输入添加了一个额外的向量Positional Encoding,维度和embedding的维度一样,这个向量采用了一种很独特的方法来让模型学习到这个值,这个向量能决定当前词的位置,或者说在一个句子中不同的词之间的距离。这个位置向量的具体计算方法有很多种,论文中的计算方法如下

在这里插入图片描述
其中pos是指当前词在句子中的位置,i是指向量中每个值的index,可以看出,在偶数位置,使用正弦编码,在奇数位置,使用余弦编码。最后把这个Positional Encoding与embedding的值相加,作为输入送到下一层。

在这里插入图片描述
在这里插入图片描述
为了让模型捕捉到单词的顺序信息,我们添加位置编码向量信息(POSITIONAL ENCODING),位置编码向量不需要训练,它有一个规则的产生方式(上图公式)。

如果我们的嵌入维度为4,那么实际上的位置编码就如下图所示:

在这里插入图片描述
那么生成位置向量需要遵循怎样的规则呢?

观察下面的图形,每一行都代表着对一个矢量的位置编码。因此第一行就是我们输入序列中第一个字的嵌入向量,每行都包含512个值,每个值介于1和-1之间。我们用颜色来表示1,-1之间的值,这样方便可视化的方式表现出来:

在这里插入图片描述
这是一个20个字(行)的(512)列位置编码示例。你会发现它咋中心位置被分为了2半,这是因为左半部分的值是一由一个正弦函数生成的,而右半部分是由另一个函数(余弦)生成。然后将它们连接起来形成每个位置编码矢量。

Layer normalization

在transformer中,每一个子层(self-attetion,ffnn)之后都会接一个残差模块,并且有一个Layer normalization

在这里插入图片描述

在进一步探索其内部计算方式,我们可以将上面图层可视化为下图:

在这里插入图片描述
残差模块相信大家都很清楚了,这里不再讲解,主要讲解下Layer normalization。Normalization有很多种,但是它们都有一个共同的目的,那就是把输入转化成均值为0方差为1的数据。我们在把数据送入激活函数之前进行normalization(归一化),因为我们不希望输入数据落在激活函数的饱和区。

说到 normalization,那就肯定得提到 Batch Normalization。BN的主要思想就是:在每一层的每一批数据上进行归一化。我们可能会对输入数据进行归一化,但是经过该网络层的作用后,我们的数据已经不再是归一化的了。随着这种情况的发展,数据的偏差越来越大,我的反向传播需要考虑到这些大的偏差,这就迫使我们只能使用较小的学习率来防止梯度消失或者梯度爆炸。

BN的具体做法就是对每一小批数据,在批这个方向上做归一化。如下图所示:

在这里插入图片描述
可以看到,右半边求均值是沿着数据 batch_size的方向进行的,其计算公式如下:

在这里插入图片描述

那么什么是 Layer normalization 呢?它也是归一化数据的一种方式,不过 LN 是在每一个样本上计算均值和方差,而不是BN那种在批方向上计算方差和均值。

在这里插入图片描述
下面看一下LN的公式:

在这里插入图片描述
到这里为止就是全部encoders的内容了,如果把两个encoders叠加在一起就是这样的结构,在self-attention需要强调的最后一点是其采用了残差网络中的short-cut结构,目的是解决深度学习中的退化问题。

在这里插入图片描述

Decoder 层

在这里插入图片描述
上图是transformer的一个详细结构,相比本文一开始结束的结构图会更详细些,接下来,我们会按照这个结构图讲解下decoder部分。

可以看到decoder部分其实和encoder部分大同小异,不过在最下面额外多了一个masked mutil-head attetion,这里的mask也是transformer一个很关键的技术,我们一起来看一下。

Mask

mask 表示掩码,它对某些值进行掩盖,使其在参数更新时不产生效果。Transformer 模型里面涉及两种 mask,分别是 padding mask 和 sequence mask。

其中,padding mask 在所有的 scaled dot-product attention 里面都需要用到,而 sequence mask 只有在 decoder 的 self-attention 里面用到。

Padding Mask

什么是 padding mask 呢?因为每个批次输入序列长度是不一样的也就是说,我们要对输入序列进行对齐。具体来说,就是给在较短的序列后面填充 0。但是如果输入的序列太长,则是截取左边的内容,把多余的直接舍弃。因为这些填充的位置,其实是没什么意义的,所以我们的attention机制不应该把注意力放在这些位置上,所以我们需要进行一些处理。

具体的做法是,把这些位置的值加上一个非常大的负数(负无穷),这样的话,经过 softmax这些位置的概率就会接近0!

而我们的 padding mask 实际上是一个张量,每个值都是一个Boolean,值为 false 的地方就是我们要进行处理的地方。

Sequence mask

文章前面也提到,sequence mask 是为了使得 decoder 不能看见未来的信息。也就是对于一个序列,在 time_step 为 t 的时刻,我们的解码输出应该只能依赖于 t 时刻之前的输出,而不能依赖 t 之后的输出。因此我们需要想一个办法,把 t 之后的信息给隐藏起来。

那么具体怎么做呢?也很简单:产生一个上三角矩阵,上三角的值全为0。把这个矩阵作用在每一个序列上,就可以达到我们的目的。

对于 decoder 的 self-attention,里面使用到的 scaled dot-product attention,同时需要padding mask 和 sequence mask 作为 attn_mask,具体实现就是两个mask相加作为attn_mask。其他情况,attn_mask 一律等于 padding mask。编码器通过处理输入序列启动。然后将顶部编码器的输出转换为一组注意向量k和v。每个解码器将在其“encoder-decoder attention”层中使用这些注意向量,这有助于解码器将注意力集中在输入序列中的适当位置。

完成编码阶段后,我们开始解码阶段。解码阶段的每个步骤从输出序列(本例中为英语翻译句)输出一个元素。

以下步骤重复此过程,一直到达到表示解码器已完成输出的符号。每一步的输出在下一个时间步被送入底部解码器,解码器像就像我们对编码器输入所做操作那样,我们将位置编码嵌入并添加到这些解码器输入中,以表示每个字的位置。

输出层

当decoder层全部执行完毕后,怎么把得到的向量映射为我们需要的词呢,很简单,只需要在结尾再添加一个全连接层和softmax层,假如我们的词典是1w个词,那最终softmax会输入1w个词的概率,概率值最大的对应的词就是我们最终的结果。

在这里插入图片描述

多看几遍,我还在看。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/622366
推荐阅读
相关标签
  

闽ICP备14008679号