当前位置:   article > 正文

sd模型分类_sd5个模型的区别

sd5个模型的区别

标题模型主要分为四类:

Checkpoint、LoRA、Textual Inversion、Hypernetwork,
分别对应 4 种不同的训练方式。

Checkpoint:

通过 Dreambooth 训练方式得到的大模型, 特点是出图效果好,但由于训练的是一个完整的新模型,所以训练速度普遍较慢,生成模型文件较大,一般几个 G,文件格式为 safetensors 或 ckpt。

LoRA

一种轻量化的模型微调训练方法,是在原有大模型的基础上,对该模型进行微调,用于输出固定特征的人或事物。特点是对于特定风格特征的出图效果好,训练速度快,模型文件小,一般几十到一百多 MB,需要搭配大模型使用。

Textual Inversion:

一种使用文本提示来训练模型的方法,可以简单理解为一组打包的提示词,用于生成固定特征的人或事物。特点是对于特定风格特征的出图效果好,模型文件非常小,一般几十 K,但是训练速度较慢,需要搭配大模型使用。

Hypernetwork:

类似 LoRA,但模型效果不如 LoRA,需要搭配大模型使用。
模型推荐:Checkpoint > LoRA > Textual Inversion > Hypernetwork

通常情况 Checkpoint 模型搭配 LoRA 或 Textual Inversion 模型使用,可以获得更好的出图效果。

补充:还有一类 VAE 模型,简单理解它的作用就是提升图像色彩效果,让画面看上去不会那么灰蒙蒙,此外对图像细节进行细微调整。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/135097
推荐阅读
相关标签
  

闽ICP备14008679号