赞
踩
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射 char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射 vocab_size = len(char_to_idx) print(vocab_size) corpus_indices = [char_to_idx[char] for char in corpus_chars] # 将每个字符转化为索引,得到一个索引的序列 sample = corpus_indices[: 20] print('chars:', ''.join([idx_to_char[idx] for idx in sample])) print('indices:', sample) def load_data_jay_lyrics(): with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f: corpus_chars = f.read() corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ') corpus_chars = corpus_chars[0:10000] idx_to_char = list(set(corpus_chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) vocab_size = len(char_to_idx) corpus_indices = [char_to_idx[char] for char in corpus_chars] return corpus_indices, char_to_idx, idx_to_char, vocab_size
import torch import random def data_iter_random(corpus_indices, batch_size, num_steps, device=None): # 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符 num_examples = (len(corpus_indices) - 1) // num_steps # 下取整,得到不重叠情况下的样本个数 example_indices = [i * num_steps for i in range(num_examples)] # 每个样本的第一个字符在corpus_indices中的下标 random.shuffle(example_indices) def _data(i): # 返回从i开始的长为num_steps的序列 return corpus_indices[i: i + num_steps] if device is None: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') for i in range(0, num_examples, batch_size): # 每次选出batch_size个随机样本 batch_indices = example_indices[i: i + batch_size] # 当前batch的各个样本的首字符的下标 X = [_data(j) for j in batch_indices] Y = [_data(j + 1) for j in batch_indices] yield torch.tensor(X, device=device), torch.tensor(Y, device=device) # 测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X和标签Y。 my_seq = list(range(30)) for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6): print('X: ', X, '\nY:', Y, '\n')
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None): if device is None: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') corpus_len = len(corpus_indices) // batch_size * batch_size # 保留下来的序列的长度 corpus_indices = corpus_indices[: corpus_len] # 仅保留前corpus_len个字符 indices = torch.tensor(corpus_indices, device=device) indices = indices.view(batch_size, -1) # resize成(batch_size, ) batch_num = (indices.shape[1] - 1) // num_steps for i in range(batch_num): i = i * num_steps X = indices[:, i: i + num_steps] Y = indices[:, i + 1: i + num_steps + 1] yield X, Y # 同样的设置下,打印相邻采样每次读取的小批量样本的输入X和标签Y。相邻的两个随机小批量在原始序列上的位置相毗邻。 for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6): print('X: ', X, '\nY:', Y, '\n')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。