赞
踩
目前针对对抗攻击的防御技术主要分三个方向:改训练过程/ 输入数据、修改网络、使用附加网络。
1.1 蛮力对抗训练
通过不断输入新类型的对抗样本并执行对抗训练,从而不断提升网络的鲁棒性。为了保证有效性,该方法需要使用高强度的对抗样本,并且网络架构要有充足的表达能力。这种方法需要大量的训练数据,因而被称为蛮力对抗训练。很多文献中提到这种蛮力的对抗训练可以正则化网络以减少过拟合 [23,90]。然而,Moosavi-Dezfooli[16] 指出,无论添加多少对抗样本,都存在新的对抗攻击样本可以再次欺骗网络。
1.2 数据压缩
注意到大多数训练图像都是 JPG 格式,Dziugaite[123] 等人使用 JPG 图像压缩的方法,减少对抗扰动对准确率的影响。实验证明该方法对部分对抗攻击算法有效,但通常仅采用压缩方法是远远不够的,并且压缩图像时同时也会降低正常分类的准确率,后来提出的 PCA 压缩方法也有同样的缺点。
1.3 基于中央凹机制的防御
Luo[119] 等人提出用中央凹(foveation)机制可以防御 L-BFGS 和 FGSM 生成的对抗扰动,其假设是图像分布对于转换变动是鲁棒的,而扰动不具备这种特性。但这种方法的普遍性尚未得到证明。
1.4 数据随机化方法
Xie[115] 等人发现对训练图像引入随机重缩放可以减弱对抗攻击的强度,其它方法还包括随机 padding、训练过程中的图像增强等。
2.1 深度压缩网络
人们观察到简单地将去噪自编码器(Denoising Auto Encoders)堆叠到原来的网络上只会使其变得更加脆弱,因而 Gu 和 Rigazio[24] 引入了深度压缩网络(Deep Contractive Networks),其中使用了和压缩自编码器(Contractive Auto Encoders)类似的平滑度惩罚项。
2.2 梯度正则化/ masking
使用输入梯度正则化以提高对抗攻击鲁棒性 [52],该方法和蛮力对抗训练结合有很好的效果,但计算复杂度太高。
2.3 Defensive distillation
distillation 是指将复杂网络的知识迁移到简单网络上,由 Hinton[166] 提出。Papernot[38] 利用这种技术提出了 Defensive distillation,并证明其可以抵抗小幅度扰动的对抗攻击。
2.4 生物启发的防御方法
使用类似与生物大脑中非线性树突计算的高度非线性激活函数以防御对抗攻击 [124]。另外一项工作 Dense Associative Memory 模型也是基于相似的机制 [127]。
2.5 Parseval 网络
在一层中利用全局 Lipschitz 常数加控制,利用保持每一层的 Lipschitz 常数来摆脱对抗样本的干扰。
2.6 DeepCloak
在分类层(一般为输出层)前加一层特意为对抗样本训练的层。它背后的理论认为在最显著的层里包含着最敏感的特征。
2.7 混杂方法
这章包含了多个人从多种角度对深度学习模型的调整从而使模型可以抵抗对抗性攻击。
2.8 仅探测方法
这章介绍了 4 种网络,SafetyNet,Detector subnetwork,Exploiting convolution filter statistics 及 Additional class augmentation。
3.1 防御通用扰动
利用一个单独训练的网络加在原来的模型上,从而达到不需要调整系数而且免疫对抗样本的方法。
3.2 基于 GAN 的防御
用 GAN 为基础的网络可以抵抗对抗攻击,而且作者提出在所有模型上用相同的办法来做都可以抵抗对抗样本。
3.3 仅探测方法
介绍了 Feature Squeezing、MagNet 以及混杂的办法。
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。