赞
踩
先来看个容器部署的例子:
一个 imklog 模块,一个 imuxsock 模块,一个 rsyslogd 自己的 main 函数主进程。这三个进程一定要运行在同一台机器上,否则,它们之间基于 Socket 的通信和文件交换,都会出现问题。现在,我要把 rsyslogd 这个应用给容器化,由于受限于容器的“单进程模型”,这三个模块必须被分别制作成三个不同的容器。而在这三个容器运行的时候,它们设置的内存配额都是 1 GB。现有两个部署节点一个 node-1 有 3G内存,一个 node-2 有 2.5G内存,三个容器启动后会进入 Swarm 的待调度队列,因为受限于节点的内存,然后容器会被调度到不同节点上,比如 rsyslogd 模块和 imklog 调度到了 node-2,但是因为剩余内存不够,imuxsock 模块只能运行在 node-1 上。
这是一个典型的成组调度(gang scheduling)没有被妥善处理的例子。
当然,这个问题也有些解决方案,比如 Mesos 中就有一个资源囤积(resource hoarding)的机制,会在所有设置了 Affinity 约束的任务都达到时,才开始对它们统一进行调度。Google Omega论文中也提出乐观调度处理冲突的方法,即:先不管这些冲突,而是通过精心设计的回滚机制在出现了冲突之后解决问题。
可是这些方法都谈不上完美,资源囤积带来了不可避免的调度效率损失和死锁的可能性;而乐观调度的复杂程度,则不是常规技术团队所能驾驭的。
但是,到了 Kubernetes 项目里,这样的问题就迎刃而解了:Pod 是 Kubernetes 里的原子调度单位。这就意味着,Kubernetes 项目的调度器,是统一按照 Pod 而非容器的资源需求进行计算的。
所以,像 imklog、imuxsock 和 main 函数主进程这样的三个容器,正是一个典型的由三个容器组成的 Pod。
像这些容器间的紧密协作,我们可以称为“超亲密关系”。这些具有“超亲密关系”容器的典型特征包括但不限于:互相之间会发生直接的文件交换、使用 localhost 或者 Socket 文件进行本地通信、会发生非常频繁的远程调用、需要共享某些 Linux Namespace(比如,一个容器要加入另一个容器的 Network Namespace)等等。
这也就意味着,并不是所有有“关系”的容器都属于同一个 Pod。比如,PHP 应用容器和 MySQL 虽然会发生访问关系,但并没有必要、也不应该部署在同一台机器上,它们更适合做成两个 Pod。
不止是调度问题的处理,Pod 在 Kubernetes 项目里还有更重要的意义,那就是:容器设计模式。
在介绍这个之前,先来介绍下 Pod 的实现原理。
首先,关于 Pod 最重要的一个事实是:它只是一个逻辑概念。
也就是说,Kubernetes 真正处理的,还是宿主机操作系统上 Linux 容器的 Namespace 和 Cgroups,而并不存在一个所谓的 Pod 的边界或者隔离环境。
那么,Pod 又是怎么被“创建”出来的呢?
答案是:Pod,其实是一组共享了某些资源的容器。
具体的说:Pod 里的所有容器,共享的是同一个 Network Namespace,并且可以声明共享同一个 Volume。
那这么来看的话,一个有 A、B 两个容器的 Pod,不就是等同于一个容器(容器 A)共享另外一个容器(容器 B)的网络和 Volume 的玩儿法么?
这好像通过 docker run --net --volumes-from 这样的命令就能实现嘛,比如:
$ docker run --net=B --volumes-from=B --name=A image-A ...
但是,你有没有考虑过,如果真这样做的话,容器 B 就必须比容器 A 先启动,这样一个 Pod 里的多个容器就不是对等关系,而是拓扑关系了。
所以,在 Kubernetes 项目里,Pod 的实现需要使用一个中间容器,这个容器叫作 Infra 容器。在这个 Pod 中,Infra 容器永远都是第一个被创建的容器,而其他用户定义的容器,则通过 Join Network Namespace 的方式,与 Infra 容器关联在一起。这样的组织关系,可以用下面这样一个示意图来表达:
如上图所示,这个 Pod 里有两个用户容器 A 和 B,还有一个 Infra 容器。很容易理解,在 Kubernetes 项目里,Infra 容器一定要占用极少的资源,所以它使用的是一个非常特殊的镜像,叫作:k8s.gcr.io/pause。这个镜像是一个用汇编语言编写的、永远处于“暂停”状态的容器,解压后的大小也只有 100~200 KB 左右。
在 Infra 容器“Hold 住”Network Namespace 后,用户容器就可以加入到 Infra 容器的 Network Namespace 当中了。所以,如果你查看这些容器在宿主机上的 Namespace 文件,它们指向的值一定是完全一样的。
这也就意味着,对于 Pod 里的容器 A 和容器 B 来说:
而对于同一个 Pod 里面的所有用户容器来说,它们的进出流量,也可以认为都是通过 Infra 容器完成的。这一点很重要,因为将来如果你要为 Kubernetes 开发一个网络插件时,应该重点考虑的是如何配置这个 Pod 的 Network Namespace,而不是每一个用户容器如何使用你的网络配置,这是没有意义的。
这就意味着,如果你的网络插件需要在容器里安装某些包或者配置才能完成的话,是不可取的:Infra 容器镜像的 rootfs 里几乎什么都没有,没有你随意发挥的空间。当然,这同时也意味着你的网络插件完全不必关心用户容器的启动与否,而只需要关注如何配置 Pod,也就是 Infra 容器的 Network Namespace 即可。
有了这个设计之后,共享 Volume 就简单多了:Kubernetes 项目只要把所有 Volume 的定义都设计在 Pod 层级即可。
这样,一个 Volume 对应的宿主机目录对于 Pod 来说就只有一个,Pod 里的容器只要声明挂载这个 Volume,就一定可以共享这个 Volume 对应的宿主机目录。比如下面这个例子:
apiVersion: v1 kind: Pod metadata: name: two-containers spec: restartPolicy: Never volumes: - name: shared-data hostPath: path: /data containers: - name: nginx-container image: nginx volumeMounts: - name: shared-data mountPath: /usr/share/nginx/html - name: debian-container image: debian volumeMounts: - name: shared-data mountPath: /pod-data command: ["/bin/sh"] args: ["-c", "echo Hello from the debian container > /pod-data/index.html"]
在这个例子中,debian-container 和 nginx-container 都声明挂载了 shared-data 这个 Volume。而 shared-data 是 hostPath 类型。所以,它对应在宿主机上的目录就是:/data。而这个目录,其实就被同时绑定挂载进了上述两个容器当中。
这就是为什么,nginx-container 可以从它的 /usr/share/nginx/html 目录中,读取到 debian-container 生成的 index.html 文件的原因。
明白了 Pod 的实现原理后,我们再来讨论“容器设计模式”,就容易多了。
Pod 这种“超亲密关系”容器的设计思想,实际上就是希望,当用户想在一个容器里跑多个功能并不相关的应用时,应该优先考虑它们是不是更应该被描述成一个 Pod 里的多个容器。
为了能够掌握这种思考方式,你就应该尽量尝试使用它来描述一些用单个容器难以解决的问题。
我们现在有一个 Java Web 应用的 WAR 包,它需要被放在 Tomcat 的 webapps 目录下运行起来。
假如,你现在只能用 Docker 来做这件事情,那该如何处理这个组合关系呢?
实际上,有了 Pod 之后,这样的问题就很容易解决了。我们可以把 WAR 包和 Tomcat 分别做成镜像,然后把它们作为一个 Pod 里的两个容器“组合”在一起。这个 Pod 的配置文件如下所示:
apiVersion: v1 kind: Pod metadata: name: javaweb-2 spec: initContainers: - image: geektime/sample:v2 name: war command: ["cp", "/sample.war", "/app"] volumeMounts: - mountPath: /app name: app-volume containers: - image: geektime/tomcat:7.0 name: tomcat command: ["sh","-c","/root/apache-tomcat-7.0.42-v2/bin/start.sh"] volumeMounts: - mountPath: /root/apache-tomcat-7.0.42-v2/webapps name: app-volume ports: - containerPort: 8080 hostPort: 8001 volumes: - name: app-volume emptyDir: {}
在这个 Pod 中,我们定义了两个容器,第一个容器使用的镜像是 geektime/sample:v2,这个镜像里只有一个 WAR 包(sample.war)放在根目录下。而第二个容器则使用的是一个标准的 Tomcat 镜像。
不过,你可能已经注意到,WAR 包容器的类型不再是一个普通容器,而是一个 Init Container 类型的容器。
在 Pod 中,所有 Init Container 定义的容器,都会比 spec.containers 定义的用户容器先启动。并且,Init Container 容器会按顺序逐一启动,而直到它们都启动并且退出了,用户容器才会启动。
所以,这个 Init Container 类型的 WAR 包容器启动后,我执行了一句"cp /sample.war /app",把应用的 WAR 包拷贝到 /app 目录下,然后退出。
而后这个 /app 目录,就挂载了一个名叫 app-volume 的 Volume。
接下来就很关键了。Tomcat 容器,同样声明了挂载 app-volume 到自己的 webapps 目录下。
所以,等 Tomcat 容器启动时,它的 webapps 目录下就一定会存在 sample.war 文件:这个文件正是 WAR 包容器启动时拷贝到这个 Volume 里面的,而这个 Volume 是被这两个容器共享的。
像这样,我们就用一种“组合”方式,解决了 WAR 包与 Tomcat 容器之间耦合关系的问题。
实际上,这个所谓的“组合”操作,正是容器设计模式里最常用的一种模式,它的名字叫:sidecar。
顾名思义,sidecar 指的就是我们可以在一个 Pod 中,启动一个辅助容器,来完成一些独立于主进程(主容器)之外的工作。
比如,在我们的这个应用 Pod 中,Tomcat 容器是我们要使用的主容器,而 WAR 包容器的存在,只是为了给它提供一个 WAR 包而已。所以,我们用 Init Container 的方式优先运行 WAR 包容器,扮演了一个 sidecar 的角色。
比如,我现在有一个应用,需要不断地把日志文件输出到容器的 /var/log 目录中。
这时,我就可以把一个 Pod 里的 Volume 挂载到应用容器的 /var/log 目录上。
然后,我在这个 Pod 里同时运行一个 sidecar 容器,它也声明挂载同一个 Volume 到自己的 /var/log 目录上。
这样,接下来 sidecar 容器就只需要做一件事儿,那就是不断地从自己的 /var/log 目录里读取日志文件,转发到 MongoDB 或者 Elasticsearch 中存储起来。这样,一个最基本的日志收集工作就完成了。
跟第一个例子一样,这个例子中的 sidecar 的主要工作也是使用共享的 Volume 来完成对文件的操作。
但不要忘记,Pod 的另一个重要特性是,它的所有容器都共享同一个 Network Namespace。这就使得很多与 Pod 网络相关的配置和管理,也都可以交给 sidecar 完成,而完全无须干涉用户容器。
Pod 扮演的是传统部署环境里“虚拟机”的角色。这样的设计,是为了使用户从传统环境(虚拟机环境)向 Kubernetes(容器环境)的迁移,更加平滑。
而如果你能把 Pod 看成传统环境里的“机器”、把容器看作是运行在这个“机器”里的“用户程序”,那么很多关于 Pod 对象的设计就非常容易理解了。
比如,凡是调度、网络、存储,以及安全相关的属性,基本上是 Pod 级别的。
这些属性的共同特征是,它们描述的是“机器”这个整体,而不是里面运行的“程序”。比如,配置这个“机器”的网卡(即:Pod 的网络定义),配置这个“机器”的磁盘(即:Pod 的存储定义),配置这个“机器”的防火墙(即:Pod 的安全定义)。更不用说,这台“机器”运行在哪个服务器之上(即:Pod 的调度)。
笔记来源于:极客时间《深入剖析Kubernetes》
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。