赞
踩
循环冗余校验码(CRC)的基本原理是:
将被处理的报文比特序列当做一个二进制多项式A(x)的系数,(任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111),该系数乘以2^n(n为生成多项式g(x)中x的最高次幂)以后再除以发送方和接收方事先约定好的生成多项式g(x)后,求得的余数P(x)就是CRC校验码,把它副到原始的报文A(x)后面形成新的报文即为A(x)*x^n+P(x),并且发送到接收端,接收端从整个报文中提取出报文B(x)(即为发送端的A(x),此时不能保证发送正确所以用B(x)表示),然后用与接收端同样的做法将B(x)对应的二进制序列乘以2^n(左移n位)后,除以事先约定好的g(x)得到一个余数p(x),此时如果接收报文中的CRC校验码与计算得到的校验码相同,即P(x)=p(x),则传输正确,否则传输有误,重新传输。
上述工作过程中有几点需要注意:
1.在进行CRC计算时,采用二进制(模2)运算法,即加法不进位,减法不借位,其本质就是两个操作数进行逻辑异或运算;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。