当前位置:   article > 正文

宽度优先搜索算法(BFS)

宽度优先搜索算法

宽度优先搜索算法(BFS)是什么?

宽度优先搜索算法(BFS)(也称为广度优先搜索)主要运用于树、图和矩阵(这三种可以都归类在图中),用于在图中从起始顶点开始逐层地向外探索,直到找到目标顶点为止。

在本篇文章中,我们主要讨论其在中的运用

树的宽度优先搜索

树的宽度优先搜索 即 树的层序遍历 :逐层访问树的节点,并按照层级顺序输出节点的值。从树的根节点开始,逐层向下遍历,先访问当前层的所有节点,然后再访问下一层的节点,依次类推直到遍历完整棵树

其过程如下图所示:

如何实现树的层序遍历呢?

我们在遍历每一层节点时,都是从左向右依次遍历的,即先遍历上一层节点中的第一个节点的孩子节点 ,即优先遍历前面的节点,此时,满足 “先进先出”,因此,我们可以使用队列来帮助我们完成层序遍历

具体步骤如下:

1. 先将根节点放入队列中

2. 从队列中出队一个节点,并将该节点的所有孩子节点(如果有)依次放入队列中

3. 继续取出节点,指导队列为空

4. 当队列为空时,遍历完成

接下来,我们通过一些练习来进一步体会和掌握BFS

相关练习

练习1:N叉树的层序遍历

题目链接:

429. N 叉树的层序遍历 - 力扣(LeetCode)

题目描述:

给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。

树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:[[1],[3,2,4],[5,6]]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]

提示:

  • 树的高度不会超过 1000
  • 树的节点总数在 [0, 10^4] 之间

思路分析:

 本题要求我们返回N叉树节点值的层序遍历,且以 List<List<Integer>>类型的结果返回,即每一层使用一个列表来存储本层的所有节点的值,然后将这些列表放到一个列表中返回

在这里,我们可以使用队列来帮助我们进行层序遍历,但在将节点出队时,也会将其孩子节点放入队列中,那么,我们如何区分每一层的节点呢?

 我们可以使用一个变量 count 在节点出队之前,记录队列当前节点个数(即这一层节点个数),然后再将这 count 个节点依次出队列,将其节点值放入列表中,同时将其孩子节点放入队列中

具体步骤:

1. 先判断树是否为空,不为空将根节点放入队列中

2. 记录当前队列中包含的节点个数count

3. 将count个节点依次出队列,将其节点值放入一个临时列表中,同时将其孩子节点放入队列中

4. 遍历完count个节点后,临时列表中就存放了这一层所有节点的值,然后再将临时列表放入结果列表中

5. 继续遍历,直到队列为空

6. 返回结果

代码实现:

  1. class Solution {
  2. public List<List<Integer>> levelOrder(Node root) {
  3. List<List<Integer>> ret = new ArrayList<>();
  4. Node cur = root;
  5. Queue<Node> queue = new ArrayDeque<>();
  6. //先将根节点放入队列中
  7. if(cur == null) return ret;
  8. queue.add(cur);
  9. int count = 0;
  10. while (!queue.isEmpty()){
  11. //先记录当前队列中节点个数
  12. count = queue.size();
  13. List<Integer> tmp = new ArrayList<>();//使用临时表存储这一层节点的值
  14. for (int i = 0; i < count; i++) {
  15. cur = queue.poll();//将队头元素出队
  16. tmp.add(cur.val);
  17. for (Node child: cur.children) {//将队头元素的孩子节点放入队列中
  18. queue.add(child);
  19. }
  20. }
  21. ret.add(tmp);//将临时表放入ret中
  22. }
  23. return ret;
  24. }
  25. }

练习2:二叉树的锯齿形层序遍历

题目链接:

103. 二叉树的锯齿形层序遍历 - 力扣(LeetCode)

题目描述:

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[20,9],[15,7]]

示例 2:

输入:root = [1]
输出:[[1]]

示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000] 内
  • -100 <= Node.val <= 100

思路分析:

 本题要求我们返回二叉树的锯齿形层序遍历,

什么是锯齿形层序遍历?

先从左向右,再从右向左地对每一层节点进行遍历

以示例1为例: 

当前层数为奇数时,从左向右遍历;当前层数为偶数时,从右向左遍历

因此,本题的解题思路与练习1类似,唯一不同的是:在偶数层时需要将所有节点的值进行逆序,我们可以使用一个int类型的变量(或boolean类型的变量)来标记这一层的节点是否需要逆序

代码实现:

  1. class Solution {
  2. public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
  3. List<List<Integer>> ret = new ArrayList<>();
  4. Queue<TreeNode> queue = new ArrayDeque<>();
  5. int flag = 1;//标识是否需要逆序
  6. TreeNode cur = root;
  7. //先将根节点放入队列中
  8. if(cur == null) return ret;
  9. queue.add(cur);
  10. int count = 0;
  11. while(!queue.isEmpty()){
  12. //先记录当前队列节点个数
  13. count = queue.size();
  14. //依次出队列
  15. List<Integer> tmp = new ArrayList<>();
  16. for(int i = 0; i < count; i++){
  17. cur = queue.poll();
  18. tmp.add(cur.val);
  19. //将其孩子节点入队列
  20. if(cur.left != null) queue.add(cur.left);
  21. if(cur.right != null) queue.add(cur.right);
  22. }
  23. //判断是否需要逆序
  24. if(flag == -1){
  25. Collections.reverse(tmp);
  26. }
  27. ret.add(tmp);
  28. flag = -flag;
  29. }
  30. return ret;
  31. }
  32. }

练习3:在每个树行中找最大值

题目链接:

LCR 044. 在每个树行中找最大值 - 力扣(LeetCode)

题目描述:

给定一棵二叉树的根节点 root ,请找出该二叉树中每一层的最大值。

示例1:

输入: root = [1,3,2,5,3,null,9]
输出: [1,3,9]
解释:
          1
         / \
        3   2
       / \   \  
      5   3   9 

示例2:

输入: root = [1,2,3]
输出: [1,3]
解释:
          1
         / \
        2   3

示例3:

输入: root = [1]
输出: [1]

示例4:

输入: root = [1,null,2]
输出: [1,2]
解释:      
           1 
            \
             2     

示例5:

输入: root = []
输出: []

提示:

  • 二叉树的节点个数的范围是 [0,104]
  • -231 <= Node.val <= 231 - 1

思路分析:

题目要求我们找到二叉树中每一层中的最大值,因此,我们只需要进行层序遍历,并在每一层中寻找最大值即可

代码实现:

  1. class Solution {
  2. public List<Integer> largestValues(TreeNode root) {
  3. List<Integer> ret = new ArrayList<>();
  4. TreeNode cur = root;
  5. Queue<TreeNode> queue = new ArrayDeque<>();
  6. //先将根节点放入
  7. if(cur == null) return ret;
  8. queue.add(cur);
  9. int count = 0;
  10. while(!queue.isEmpty()){
  11. //先计算队列中有多少个元素
  12. count = queue.size();
  13. //将元素依次出队列
  14. int max = Integer.MIN_VALUE;
  15. for(int i = 0; i < count; i++){
  16. cur = queue.poll();
  17. if(max < cur.val){//寻找这一层的最大值
  18. max = cur.val;
  19. }
  20. //将其孩子节点放入队列中
  21. if(cur.left != null) queue.add(cur.left);
  22. if(cur.right != null) queue.add(cur.right);
  23. }
  24. ret.add(max);//将这一层的最大值添加到ret中
  25. }
  26. return ret;
  27. }
  28. }

练习4:二叉树的最大宽度

题目链接:

662. 二叉树最大宽度 - 力扣(LeetCode)

题目描述:

给你一棵二叉树的根节点 root ,返回树的 最大宽度 。

树的 最大宽度 是所有层中最大的 宽度 。

每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度。将这个二叉树视作与满二叉树结构相同,两端点间会出现一些延伸到这一层的 null 节点,这些 null 节点也计入长度。

题目数据保证答案将会在  32 位 带符号整数范围内。

示例 1:

输入:root = [1,3,2,5,3,null,9]
输出:4
解释:最大宽度出现在树的第 3 层,宽度为 4 (5,3,null,9) 。

示例 2:

输入:root = [1,3,2,5,null,null,9,6,null,7]
输出:7
解释:最大宽度出现在树的第 4 层,宽度为 7 (6,null,null,null,null,null,7) 。

示例 3:

输入:root = [1,3,2,5]
输出:2
解释:最大宽度出现在树的第 2 层,宽度为 2 (3,2) 。

提示:

  • 树中节点的数目范围是 [1, 3000]
  • -100 <= Node.val <= 100

思路分析:

 题目要求我们返回二叉树的最大宽度,需要注意的是:这里的宽度不是指这一层有多少个节点,而是指这一层最左端的非空节点left和最右端的非空节点right之间的长度,left和right之间为空或不存在的节点也需计入长度

我们以示例2为例:

left和right之间的节点及其延伸到这一层的null节点都要计入,因此,我们首先可以想到:可以添加这些空节点,即若当前节点的右孩子为空,则将null入队列;若当前节点为null,则将null null两个节点入队列,这样,我们就补齐了这一层两端点之间的节点,因此可以直接使用 count 变量记录这一层的宽度,但是,虽然树中节点的数目范围为 1 - 3000,但若出现极端情况,即:

此时,需要补充的空节点数量非常多,超出时间限制,因此,该方法不能解决本题

本层宽度 = 最左端的非空节点left和最右端的非空节点right之间的长度,因此,我们可以直接寻找最左端非空节点left的位置 和最右端非空节点right的位置,然后就可以直接求出这一层的宽度

如何找到最左端非空节点left的位置 和最右端非空节点right的位置?

我们对节点进行编号,从1开始(即根节点为1),这样当前节点cur的编号为index,则其左孩子为2*index,右孩子为2*index + 1,通过编号,我们就能很容易的找到每一个节点,此时,  每一层的宽度 = 最右侧非空节点right的编号 - 最左侧非空节点left的编号 + 1,在这里,我们使用 Pair(配对) 来关联当前节点和其编号

具体步骤:

1. 将根节点及其编号1放入队列中,此时最大宽度为1

2. 先记录当前队列中元素个数count

3. 将count个元素依次出队列,记录第一个节点的编号 和最后一个节点的编号,遍历过程中,将当前节点的孩子节点和编号放入队列中

4. 计算该层宽度 right - left + 1,并更新最大宽度

5. 继续遍历,直达队列为空

代码实现:

  1. class Solution {
  2. public int widthOfBinaryTree(TreeNode root) {
  3. TreeNode cur = root;
  4. Queue<Pair<TreeNode, Integer>> queue = new ArrayDeque<>();
  5. queue.add(new Pair<TreeNode, Integer>(root, 1));//将根节点添加到队列中
  6. int ret = 1;//最大宽度
  7. int count = 0;
  8. while(!queue.isEmpty()){
  9. count = queue.size();
  10. int left = 0, right = 0;//记录最左端和最右端非空节点的编号
  11. for(int i = 0; i < count; i++){
  12. Pair<TreeNode, Integer> pair = queue.poll();
  13. int index = pair.getValue();
  14. if(i == 0) left = index;//第一个非空节点
  15. if(i == count - 1) right = index;//最后一个非空节点
  16. cur = pair.getKey();
  17. if(cur.left != null) queue.add(new Pair<TreeNode, Integer>(cur.left, index*2));
  18. if(cur.right != null) queue.add(new Pair<TreeNode, Integer>(cur.right, index*2 + 1));
  19. }
  20. ret = Math.max(ret, right - left + 1);//更新最大宽度
  21. }
  22. return ret;
  23. }
  24. }
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/386093
推荐阅读
相关标签
  

闽ICP备14008679号