赞
踩
注意: 在没有创建库的时候搜索,ES会创建一个库并自动创建该字段并且设置为String类型也就是text
什么是elasticsearch?
什么是elastic stack(ELK)?
什么是Lucene?
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
ELK技术栈
本文只使用了elasticsearch,以及kibana做可视化界面
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene 。
elasticsearch的发展历史:
倒排索引的概念是基于MySQL这样的正向索引而言的。
设置了索引的话挺快的,但要是模糊查询则就很慢!
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引中有两个非常重要的概念:
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条创建倒排索引是对正向索引的一种特殊处理,流程如下:
如图:
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
概念区别:
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
优缺点:
正向索引:
倒排索引:
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
一个文档就像数据库里的一条数据,字段就像数据库里的列
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的字段(Field),类似于mysql数据库中的列。
索引就像数据库里的表,映射就像数据库中定义的表结构
索引(Index),就是相同类型的文档的集合【类似mysql中的表】
例如:
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
各自长处:
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
在企业中,往往是两者结合使用:
分词器的作用是什么?
- 创建倒排索引时对文档分词
- 用户搜索时,对输入的内容分词
IK分词器有几种模式?
- ik_smart:智能切分,粗粒度
- ik_max_word:最细切分,细粒度
IK分词器如何拓展词条?如何停用词条?
- 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
- 在词典中添加拓展词条或者停用词条
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。
课前资料提供了镜像的tar包:
大家将其上传到虚拟机中,然后运行命令加载即可:
# 导入数据 docker load -i es.tar
注意:同理还有kibana
的tar包也需要这样做。
运行docker命令,部署单点es:
docker run -d \ --name es \ -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \ -e "discovery.type=single-node" \ -v es-data:/usr/share/elasticsearch/data \ -v es-plugins:/usr/share/elasticsearch/plugins \ --privileged \ --network es-net \ -p 9200:9200 \ -p 9300:9300 \ elasticsearch:7.12.1
命令解释:
-e "cluster.name=es-docker-cluster"
:设置集群名称-e "http.host=0.0.0.0"
:监听的地址,可以外网访问-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:内存大小-e "discovery.type=single-node"
:非集群模式-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录--privileged
:授予逻辑卷访问权--network es-net
:加入一个名为es-net的网络中-p 9200:9200
:端口映射配置在浏览器中输入:http://192.168.194.131/:9200 即可看到elasticsearch的响应结果:
kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。
创建网络后,导入kibana压缩包,然后创建并启动相应容器。【和前面部署单点es一样做法】
再运行docker命令,部署kibana
docker run -d \ --name kibana \ -e ELASTICSEARCH_HOSTS=http://es:9200 \ --network=es-net \ -p 5601:5601 \ kibana:7.12.1
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch-p 5601:5601
:端口映射配置kibana启动一般比较慢,需要多等待一会,可以通过命令:
docker logs -f kibana
查看运行日志,当查看到下面的日志,说明成功:
此时,在浏览器输入地址访问:http://192.168.194.131:5601,即可看到结果如下图:
kibana左侧中提供了一个DevTools界面:
这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。
# 进入容器内部 docker exec -it elasticsearch /bin/bash # 在线下载并安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip #退出 exit #重启容器 docker restart elasticsearch
1)查看数据卷目录
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
显示结果:
[ { "CreatedAt": "2022-05-06T10:06:34+08:00", "Driver": "local", "Labels": null, "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data", "Name": "es-plugins", "Options": null, "Scope": "local" } ]
说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data
这个目录中。
2)解压缩分词器安装包
下面我们需要把课前资料中的ik分词器解压缩,重命名为ik
3)上传到es容器的插件数据卷中
也就是/var/lib/docker/volumes/es-plugins/_data
:
4)重启容器
# 4、重启容器 docker restart es
# 查看es日志 docker logs -f es
5)测试:
IK分词器包含两种模式:
ik_smart
:最少切分
ik_max_word
:最细切分
在kibana的Dev tools中输入以下代码:
”analyzer“ 就是选择分词器模式
GET /_analyze { "analyzer": "ik_max_word", "text": "黑马程序员学习java太棒了" }
结果:
{ "tokens" : [ { "token" : "黑马", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 0 }, { "token" : "程序员", "start_offset" : 2, "end_offset" : 5, "type" : "CN_WORD", "position" : 1 }, { "token" : "程序", "start_offset" : 2, "end_offset" : 4, "type" : "CN_WORD", "position" : 2 }, { "token" : "员", "start_offset" : 4, "end_offset" : 5, "type" : "CN_CHAR", "position" : 3 }, { "token" : "学习", "start_offset" : 5, "end_offset" : 7, "type" : "CN_WORD", "position" : 4 }, { "token" : "java", "start_offset" : 7, "end_offset" : 11, "type" : "ENGLISH", "position" : 5 }, { "token" : "太棒了", "start_offset" : 11, "end_offset" : 14, "type" : "CN_WORD", "position" : 6 }, { "token" : "太棒", "start_offset" : 11, "end_offset" : 13, "type" : "CN_WORD", "position" : 7 }, { "token" : "了", "start_offset" : 13, "end_offset" : 14, "type" : "CN_CHAR", "position" : 8 } ] }
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“白嫖” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
1)打开IK分词器config目录:
2)在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--> <entry key="ext_dict">ext.dic</entry> </properties>
3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
白嫖 奥力给
4)重启elasticsearch
docker restart es # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载ext.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "传智播客Java就业超过90%,奥力给!" }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。
IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。
1)IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典--> <entry key="ext_dict">ext.dic</entry> <!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--> <entry key="ext_stopwords">stopword.dic</entry> </properties>
3)在 stopword.dic 添加停用词
大帅逼
4)重启elasticsearch
# 重启服务 docker restart es docker restart kibana # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载stopword.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "我是真的会谢Java就业率超过95%,大帅逼都点赞白嫖,奥力给!" }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
索引库就类似数据库表,mapping映射就类似表的结构。
我们要向es中存储数据,必须先创建“库”和“表”。
mapping是对索引库中文档的约束,常见的mapping属性包括:
type:字段数据类型,常见的简单类型有:
字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
keyword类型只能整体搜索,不支持搜索部分内容
数值:long、integer、short、byte、double、float、
布尔:boolean
日期:date
对象:object
index:是否创建索引,默认为true
analyzer:使用哪种分词器
properties:该字段的子字段
例如下面的json文档:
{ "age": 21, "weight": 52.1, "isMarried": false, "info": "真相只有一个!", "email": "zy@itcast.cn", "score": [99.1, 99.5, 98.9], "name": { "firstName": "柯", "lastName": "南" } }
对应的每个字段映射(mapping):
CRUD简单描述:
- 创建索引库:PUT /索引库名
- 查询索引库:GET /索引库名
- 删除索引库:DELETE /索引库名
- 修改索引库(添加字段):PUT /索引库名/_mapping
这里统一使用Kibana编写DSL的方式来演示。
基本语法:
格式:
PUT /索引库名称 { "mappings": { "properties": { "字段名":{ "type": "text", "analyzer": "ik_smart" }, "字段名2":{ "type": "keyword", "index": "false" }, "字段名3":{ "properties": { "子字段": { "type": "keyword" } } }, // ...略 } } }
示例:
PUT /conan { "mappings": { "properties": { "column1":{ "type": "text", "analyzer": "ik_smart" }, "column2":{ "type": "keyword", "index": "false" }, "column3":{ "properties": { "子字段1": { "type": "keyword" }, "子字段2": { "type": "keyword" } } }, // ...略 } } }
基本语法:
请求方式:GET
请求路径:/索引库名
请求参数:无
格式:
GET /索引库名
示例:
这里的修改是只能增加新的字段到mapping中
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping { "properties": { "新字段名":{ "type": "integer" } } }
示例:
语法:
请求方式:DELETE
请求路径:/索引库名
请求参数:无
格式:
DELETE /索引库名
在kibana中测试:
文档操作有哪些?
- 创建文档:POST /{索引库名}/_doc/文档id
- 查询文档:GET /{索引库名}/_doc/文档id
- 删除文档:DELETE /{索引库名}/_doc/文档id
- 修改文档:
- 全量修改:PUT /{索引库名}/_doc/文档id
- 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}
语法:
POST /索引库名/_doc/文档id { "字段1": "值1", "字段2": "值2", "字段3": { "子属性1": "值3", "子属性2": "值4" }, // ... }
示例:
POST /heima/_doc/1 { "info": "真相只有一个!", "email": "zy@itcast.cn", "name": { "firstName": "柯", "lastName": "南" } }
响应:
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
语法:
GET /{索引库名称}/_doc/{id} //批量查询:查询该索引库下的全部文档 GET /{索引库名称}/_search
通过kibana查看数据:
GET /heima/_doc/1
查看结果:
删除使用DELETE请求,同样,需要根据id进行删除:
语法:
DELETE /{索引库名}/_doc/id值
示例:
# 根据id删除数据 DELETE /heima/_doc/1
结果:
修改有两种方式:
全量修改是覆盖原来的文档,其本质是:
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id { "字段1": "值1", "字段2": "值2", // ... 略 }
示例:
PUT /heima/_doc/1 { "info": "黑马程序员高级Java讲师", "email": "zy@itcast.cn", "name": { "firstName": "云", "lastName": "赵" } }
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id { "doc": { "字段名": "新的值", } }
示例:
POST /heima/_update/1 { "doc": { "email": "ZhaoYun@itcast.cn" } }
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:Elasticsearch Clients | Elastic
其中的Java Rest Client又包括两种:
我们使用的是Java HighLevel Rest Client客户端API
JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。
索引库操作的基本步骤:【可以根据发送请求那步的第一个参数,发过来判断需要创建什么XXXXRequest】
- 初始化RestHighLevelClient
- 创建XxxIndexRequest。XXX是Create、Get、Delete
- 准备DSL( Create时需要,其它是无参)
- 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete
根据MySQL数据库表结构(建表语句),去写索引库结构JSON。表和索引库一一对应
注意:地理坐标、组合字段。索引库里的地理坐标是一个字段:
坐标:维度,精度
。copy_to组合字段作用是供用户查询(输入关键字可以查询多个字段)
创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:
其中:
来看下酒店数据的索引库结构:
PUT /hotel { "mappings": { "properties": { "id": { "type": "keyword" }, "name":{ "type": "text", "analyzer": "ik_max_word", "copy_to": "all" }, "address":{ "type": "keyword", "index": false }, "price":{ "type": "integer" }, "score":{ "type": "integer" }, "brand":{ "type": "keyword", "copy_to": "all" }, "city":{ "type": "keyword", "copy_to": "all" }, "starName":{ "type": "keyword" }, "business":{ "type": "keyword" }, "location":{ "type": "geo_point" }, "pic":{ "type": "keyword", "index": false }, "all":{ "type": "text", "analyzer": "ik_max_word" } } } }
几个特殊字段说明:
地理坐标说明:
copy_to说明:
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)引入es的RestHighLevelClient依赖:
<dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency>
2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties> <java.version>1.8</java.version> <elasticsearch.version>7.12.1</elasticsearch.version> </properties>
3)初始化RestHighLevelClient:这里一般在启动类或者配置类里注入该Bean,用于告诉Java 访问ES的ip地址
初始化的代码如下:
@Bean public RestHighLevelClient client(){ return new RestHighLevelClient(RestClient.builder( HttpHost.create("http://192.168.150.101:9200") )); }
这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
package cn.itcast.hotel; import org.apache.http.HttpHost; import org.elasticsearch.client.RestHighLevelClient; import org.junit.jupiter.api.AfterEach; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; import java.io.IOException; public class HotelIndexTest { private RestHighLevelClient client; @BeforeEach void setUp() { this.client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://192.168.150.101:9200") )); } @AfterEach void tearDown() throws IOException { this.client.close(); } }
代码分为三步:
- 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
- 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
- 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
创建索引库的API如下:
代码:
在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:
package cn.itcast.hotel.constants; public class HotelConstants { public static final String MAPPING_TEMPLATE = "{\n" + " \"mappings\": {\n" + " \"properties\": {\n" + " \"id\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"name\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"address\":{\n" + " \"type\": \"keyword\",\n" + " \"index\": false\n" + " },\n" + " \"price\":{\n" + " \"type\": \"integer\"\n" + " },\n" + " \"score\":{\n" + " \"type\": \"integer\"\n" + " },\n" + " \"brand\":{\n" + " \"type\": \"keyword\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"city\":{\n" + " \"type\": \"keyword\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"starName\":{\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"business\":{\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"location\":{\n" + " \"type\": \"geo_point\"\n" + " },\n" + " \"pic\":{\n" + " \"type\": \"keyword\",\n" + " \"index\": false\n" + " },\n" + " \"all\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\"\n" + " }\n" + " }\n" + " }\n" + "}"; }
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:
@Test void createHotelIndex() throws IOException { // 1.创建Request对象 CreateIndexRequest request = new CreateIndexRequest("hotel"); // 2.准备请求的参数:DSL语句 request.source(MAPPING_TEMPLATE, XContentType.JSON); // 3.发送请求 client.indices().create(request, RequestOptions.DEFAULT); }
三步走:
- 1)创建Request对象。这次是DeleteIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用delete方法
删除索引库的DSL语句非常简单:
DELETE /hotel
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:
@Test void testDeleteHotelIndex() throws IOException { // 1.创建Request对象 DeleteIndexRequest request = new DeleteIndexRequest("hotel"); // 2.发送请求 client.indices().delete(request, RequestOptions.DEFAULT); }
三步走:
- 1)创建Request对象。这次是GetIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用exists方法
判断索引库是否存在,本质就是查询,对应的DSL是:
GET /hotel
@Test void testExistsHotelIndex() throws IOException { // 1.创建Request对象 GetIndexRequest request = new GetIndexRequest("hotel"); // 2.发送请求 boolean exists = client.indices().exists(request, RequestOptions.DEFAULT); // 3.输出 System.err.println(exists ? "索引库已经存在!" : "索引库不存在!"); }
这里更多的是先读取Mysql中的数据,然后再存进ES中。
文档操作的基本步骤:【可以根据发送请求那步的第一个参数,发过来判断需要创建什么XXXXRequest】
- 初始化RestHighLevelClient
- 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
- 准备参数(Index、Update、Bulk时需要)
- 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
- 解析结果(Get时需要)
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)引入es的RestHighLevelClient依赖:
<dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency>
2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties> <java.version>1.8</java.version> <elasticsearch.version>7.12.1</elasticsearch.version> </properties>
3)初始化RestHighLevelClient:这里一般写在最前面,用于告诉Java 访问ES的ip地址
初始化的代码如下:
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://192.168.150.101:9200") ));
这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
package cn.itcast.hotel; import org.apache.http.HttpHost; import org.elasticsearch.client.RestHighLevelClient; import org.junit.jupiter.api.AfterEach; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; import java.io.IOException; public class HotelIndexTest { private RestHighLevelClient client; @BeforeEach void setUp() { this.client = new RestHighLevelClient(RestClient.builder( HttpHost.create("http://192.168.150.101:9200") )); } @AfterEach void tearDown() throws IOException { this.client.close(); } }
三步走:
- 1)创建Request对象。这里是BulkRequest
- 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
- 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
案例需求:利用BulkRequest批量将数据库数据导入到索引库中。
步骤如下:
利用mybatis-plus查询酒店数据
将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
利用JavaRestClient中的BulkRequest批处理,实现批量新增文档
语法说明:
批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。
其中提供了一个add方法,用来添加其他请求:
可以看到,能添加的请求包括:
因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:
我们在导入酒店数据时,将上述代码改造成for循环处理即可。
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testBulkRequest() throws IOException { // 批量查询酒店数据 List<Hotel> hotels = hotelService.list(); // 1.创建Request BulkRequest request = new BulkRequest(); // 2.准备参数,添加多个新增的Request for (Hotel hotel : hotels) { // 2.1.转换为文档类型HotelDoc HotelDoc hotelDoc = new HotelDoc(hotel); // 2.2.创建新增文档的Request对象 request.add(new IndexRequest("hotel") .id(hotelDoc.getId().toString()) .source(JSON.toJSONString(hotelDoc), XContentType.JSON)); } // 3.发送请求 client.bulk(request, RequestOptions.DEFAULT); }
四步走:
- 0)创建索引库实体类
- 1)创建Request对象
- 2)准备请求参数,也就是DSL中的JSON文档
- 3)发送请求 (注意:这里直接使用client.xxx()的API,不再需要client.indices()了)
我们要将数据库的酒店数据查询出来,写入elasticsearch中。
1)创建索引库实体类
一般实体类里包含经纬度都需要创建一个新的实体类,将经纬度拼成一个字段
数据库查询后的结果是一个Hotel类型的对象。结构如下:
@Data @TableName("tb_hotel") public class Hotel { @TableId(type = IdType.INPUT) private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String longitude; private String latitude; private String pic; }
与我们的索引库结构存在差异:
因此,我们需要定义一个新的类型,与索引库结构吻合:
package cn.itcast.hotel.pojo; import lombok.Data; import lombok.NoArgsConstructor; @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); } }
2)新增代码
新增文档的DSL语句如下:
POST /{索引库名}/_doc/1 { "name": "Jack", "age": 21 }
对应的java代码如图:
我们导入酒店数据,基本流程一致,但是需要考虑几点变化:
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testAddDocument() throws IOException { // 批量查询酒店数据 List<Hotel> hotels = hotelService.list(); // 1.创建Request BulkRequest request = new BulkRequest(); // 2.准备参数,添加多个新增的Request for (Hotel hotel : hotels) { // 2.1.转换为文档类型HotelDoc HotelDoc hotelDoc = new HotelDoc(hotel); // 2.2.创建新增文档的Request对象 request.add(new IndexRequest("hotel") .id(hotelDoc.getId().toString()) .source(JSON.toJSONString(hotelDoc), XContentType.JSON));//实体类转JSON,指定JSON格式 request.add(new IndexRequest("xxx")...) } // 3.发送请求 client.bulk(request, RequestOptions.DEFAULT); }
查询文档是根据id查询的,所以没有批量查询
三步走:
- 1)准备Request对象。这次是查询,所以是GetRequest
- 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
- 3)解析结果,就是对JSON做反序列化
查询的DSL语句如下:
GET /hotel/_doc/{id}
非常简单,因此代码大概分两步:
不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:
可以看到,结果是一个JSON,其中文档放在一个_source
属性中,因此解析就是拿到_source
,使用工具反序列化为Java对象即可。
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testGetDocumentById() throws IOException { // 1.准备Request GetRequest request = new GetRequest("hotel", "61082"); // 2.发送请求,得到响应 GetResponse response = client.get(request, RequestOptions.DEFAULT); // 3.解析响应结果 String json = response.getSourceAsString(); HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); System.out.println(hotelDoc); }
三步走:
- 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
- 2)准备参数,无参
- 3)发送请求。因为是删除,所以是client.delete()方法
删除的DSL为是这样的:
DELETE /hotel/_doc/{id}
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testDeleteDocument() throws IOException { //0.查询数据库中的数据 List<Hotel> list = hotelService.list(); // 1.创建Request BulkRequest request = new BulkRequest(); //2.批量转换实体类,顺便写入到ES中 for (Hotel hotel : list) { //2.1转换实体类 HotelDoc hotelDoc =new HotelDoc(hotel); //2.2写入ES request.add(new DeleteRequest("hotel") .id(hotel.getId().toString())); } //3.发送请求 client.bulk(request,RequestOptions.DEFAULT); }
三步走:
- 1)准备Request对象。这次是修改,所以是UpdateRequest
- 2)准备参数。也就是JSON文档,里面包含要修改的字段
- 3)更新文档。这里调用client.update()方法
修改有两种方式:
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
只演示增量修改:
代码示例如图:
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test void testUpdateDocument() throws IOException { //0.查询数据库中的数据 List<Hotel> list = hotelService.list(); // 1.创建Request BulkRequest request = new BulkRequest(); //2.批量转换实体类,顺便写入到ES中 for (Hotel hotel : list) { //2.1转换实体类 HotelDoc hotelDoc =new HotelDoc(hotel); //2.2写入ES request.add(new UpdateRequest("hotel",hotel.getId().toString()) .doc( "price", "952", "starName", "四钻" )); } //3.发送请求 client.bulk(request,RequestOptions.DEFAULT); }
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
查询所有:查询出所有数据,一般测试用。例如:match_all
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
地理(geo)查询:根据经纬度查询。例如:
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
查询的语法基本一致:
GET /indexName/_search { "query": { "查询类型": { "查询条件": "条件值" } } }
我们以查询所有为例,其中:
// 查询所有 GET /indexName/_search { "query": { "match_all": { } } }
其它查询无非就是查询类型、查询条件的变化。
match和multi_match的区别是什么?
- match:根据一个字段查询【推荐:使用copy_to构造all字段】
- multi_match:根据多个字段查询,参与查询字段越多,查询性能越差
注:搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
全文检索查询的基本流程如下:
比较常用的场景包括:
例如京东:
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
常见的全文检索查询包括:
match查询语法如下:
GET /indexName/_search { "query": { "match": { "FIELD": "TEXT" } } }
match查询示例:
mulit_match语法如下:
GET /indexName/_search { "query": { "multi_match": { "query": "TEXT", "fields": ["FIELD1", " FIELD12"] } } }
multi_match查询示例:
精准查询类型:
- term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
- range查询:根据数值范围查询,可以是数值、日期的范围
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
因为精确查询的字段搜时不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询 GET /indexName/_search { "query": { "term": { "FIELD": { "value": "VALUE" } } } }
示例:
当我搜索的是精确词条时,能正确查询出结果:
但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询 GET /indexName/_search { "query": { "range": { "FIELD": { "gte": 10, // 这里的gte代表大于等于,gt则代表大于 "lte": 20 // lte代表小于等于,lt则代表小于 } } } }
示例:
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.12] | Elastic
常见的使用场景包括:
附近的酒店:
附近的车:
很少有业务有这种需求
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询 GET /indexName/_search { "query": { "geo_bounding_box": { "FIELD": { "top_left": { // 左上点 "lat": 31.1, "lon": 121.5 }, "bottom_right": { // 右下点 "lat": 30.9, "lon": 121.7 } } } } }
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询 GET /indexName/_search { "query": { "geo_distance": { "distance": "15km", // 半径 "FIELD": "31.21,121.5" // 圆心 } } }
示例:
我们先搜索陆家嘴附近15km的酒店:
发现共有47家酒店。
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
GET /hotel/_search { "query": { "function_score": { "query": { // 原始查询,可以是任意条件 "bool": { "must": [ {"term": {"city": "上海" }} ], "should": [ {"term": {"brand": "皇冠假日" }}, {"term": {"brand": "华美达" }} ], "must_not": [ { "range": { "price": { "lte": 500 } }} ], "filter": [ { "range": {"score": { "gte": 45 } }} ] } }, "functions": [ // 算分函数 { "filter": { // 满足的条件,品牌必须是如家【品牌是如家的才加分,这里是加分条件】 "term": { "brand": "如家" } }, "weight": 2 // 算分权重为2 } ], "boost_mode": "sum" // 加权模式,求和 } } }
elasticsearch会根据词条和文档的相关度做打分,算法由两种:
- TF-IDF算法
- BM25算法,elasticsearch5.1版本后采用的算法
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 "虹桥如家",结果如下:
[ { "_score" : 17.850193, "_source" : { "name" : "虹桥如家酒店真不错", } }, { "_score" : 12.259849, "_source" : { "name" : "外滩如家酒店真不错", } }, { "_score" : 11.91091, "_source" : { "name" : "迪士尼如家酒店真不错", } } ]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
在搜索出来的结果的分数基础上,再手动与指定的数字进行一定运算来改变算分,从而改变结果的排序。
function score query定义的三要素是什么?
- 过滤条件:哪些文档要加分
- 算分函数:如何计算function score
- 加权方式:function score 与 query score如何运算
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明
function score 查询中包含四部分内容:
function score的运行流程如下:
2)举例
需求:给“如家”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
因此最终的DSL语句如下:
GET /hotel/_search { "query": { "function_score": { "query": { .... }, // 原始查询,可以是任意条件 "functions": [ // 算分函数 { "filter": { // 满足的条件,品牌必须是如家【品牌是如家的才加分,这里是加分条件】 "term": { "brand": "如家" } }, "weight": 2 // 算分权重为2 } ], "boost_mode": "sum" // 加权模式,求和 } } }
测试,在未添加算分函数时,如家得分如下:
添加了算分函数后,如家得分就提升了:
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
- must:必须匹配每个子查询,类似“与”
- should:选择性匹配子查询,类似“或”
- must_not:必须不匹配,不参与算分,类似“非”
- filter:必须匹配,不参与算分
注意:尽量在筛选的时候多使用不参与算分的must_not和filter,以保证性能良好
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
1)语法
GET /hotel/_search { "query": { "bool": { "must": [ {"term": {"city": "上海" }} ], "should": [ {"term": {"brand": "皇冠假日" }}, {"term": {"brand": "华美达" }} ], "must_not": [ { "range": { "price": { "lte": 500 } }} ], "filter": [ { "range": {"score": { "gte": 45 } }} ] } } }
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
搜索的结果可以按照用户指定的方式去处理或展示。
查询的DSL是一个大的JSON对象,包含下列属性:
示例:
在使用排序后就不会进行算分了,根据排序设置的规则排列
普通字段是根据字典序排序
地理坐标是根据举例远近排序
keyword、数值、日期类型排序的排序语法基本一致。
语法:
排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推
(可以参考下面的图片案例)
GET /indexName/_search { "query": { "match_all": {} }, "sort": [ { "FIELD": "desc" // 排序字段、排序方式ASC、DESC } ] }
示例:
需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序
地理坐标排序略有不同。
语法说明:
GET /indexName/_search { "query": { "match_all": {} }, "sort": [ { "_geo_distance" : { "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点 "order" : "asc", // 排序方式 "unit" : "km" // 排序的距离单位 } } ] }
这个查询的含义是:
示例:
需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序
提示:获取你的位置的经纬度的方式:获取鼠标点击经纬度-地图属性-示例中心-JS API 2.0 示例 | 高德地图API
假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。
elasticsearch会禁止from+ size 超过10000的请求
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
类似于mysql中的limit ?, ?
分页的基本语法如下:
GET /hotel/_search { "query": { "match_all": {} }, "from": 0, // 分页开始的位置,默认为0 "size": 10, // 期望获取的文档总数 "sort": [ {"price": "asc"} ] }
原理:elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条
现在,我要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search { "query": { "match_all": {} }, "from": 990, // 分页开始的位置,默认为0 "size": 10, // 期望获取的文档总数 "sort": [ {"price": "asc"} ] }
这里是查询990开始的数据,也就是 第990~第1000条 数据。
集群情况的深度分页
针对深度分页,ES提供了两种解决方案,官方文档:
- search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。【官方推荐】
- scroll:原理将排序后的文档id形成快照,保存在内存。
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:
查询TOP1000,如果es是单点模式,这并无太大影响。
但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。
因为节点A的TOP200,在另一个节点可能排到10000名以外了。
因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。
那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?
当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。
注意:
- 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
- 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
- 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
使用场景:在百度等搜索后,会对结果中出现搜索字段的部分进行高亮处理。
高亮显示的实现分为两步:
<em>
标签<em>
标签编写CSS样式1)语法
GET /hotel/_search { "query": { "match": { "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询 } }, "highlight": { "fields": { // 指定要高亮的字段 "FIELD": { //【要和上面的查询字段FIELD一致】 "pre_tags": "<em>", // 用来标记高亮字段的前置标签 "post_tags": "</em>" // 用来标记高亮字段的后置标签 } } } }
2)示例:组合字段all的案例
类似于mysql中的【度量(Metric)聚合】聚合语句实现AVG,MAX,MIN;以及【桶(Bucket)聚合】GroupBy实现分组
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
aggs代表聚合,与query同级,此时query的作用是?
聚合必须的三要素:
聚合可配置属性有:
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
聚合常见的有三类:
桶(Bucket)聚合:用来对文档做分组
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
管道(pipeline)聚合:其它聚合的结果为基础做聚合
如:用桶聚合实现种类排序,然后使用度量聚合实现各个桶的最大值、最小值、平均值等
以统计酒店品牌种类,并对其进行数据分组
GET /hotel/_search { "query": { //限定要聚合的文档范围,只要添加query条件【一般在没搜索关键字时不写query】 "range": { "price": { "lte": 200 // 只对200元以下的文档聚合 } } }, "size": 0, // 设置size为0,结果中不包含查询结果文档,只包含聚合结果 "aggs": { // 定义聚合 "brandAgg": { //给聚合起个名字 "terms": { // 聚合的类型,按照品牌值聚合,所以选择term "field": "brand", // 参与聚合的字段 "order": { "doc_count": "asc" // 对聚合结果按照doc_count升序排列 }, "size": 20 // 希望获取的聚合结果数量【设置多少就最多只显示多少】 } } } }
度量聚合很少单独使用,一般是和桶聚合一并结合使用
我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
GET /hotel/_search { "size": 0, "aggs": { "brandAgg": { "terms": { "field": "brand", "order": { "scoreAgg.avg": "desc" // 对聚合结果按照指定字段降序排列 }, "size": 20 }, "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算 "score_stats": { // 聚合名称 "stats": { // 聚合类型,这里stats可以计算min、max、avg等 "field": "score" // 聚合字段,这里是score } } } } } }
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:
查询的基本步骤是:
创建SearchRequest对象
准备Request.source(),也就是DSL。
① QueryBuilders来构建查询条件
② 传入Request.source() 的 query() 方法
发送请求,得到结果
解析结果(参考JSON结果,从外到内,逐层解析)
代码解读:
第一步,创建SearchRequest
对象,指定索引库名
第二步,利用request.source()
构建DSL,DSL中可以包含查询、分页、排序、高亮等
query()
:代表查询条件,利用QueryBuilders.matchAllQuery()
构建一个match_all查询的DSL第三步,利用client.search()发送请求,得到响应
这里关键的API有两个,一个是request.source()
,其中包含了查询、排序、分页、高亮等所有功能:
另一个是QueryBuilders
,其中包含match、term、function_score、bool等各种查询:
响应结果的解析:
elasticsearch返回的结果是一个JSON字符串,结构包含:
hits
:命中的结果
total
:总条数,其中的value是具体的总条数值max_score
:所有结果中得分最高的文档的相关性算分hits
:搜索结果的文档数组,其中的每个文档都是一个json对象
_source
:文档中的原始数据,也是json对象因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:
SearchHits
:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
SearchHits#getTotalHits().value
:获取总条数信息SearchHits#getHits()
:获取SearchHit数组,也就是文档数组
SearchHit#getSourceAsString()
:获取文档结果中的_source,也就是原始的json文档数据完整代码如下:
@Test void testMatchAll() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source() .query(QueryBuilders.matchAllQuery()); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); } private void handleResponse(SearchResponse response) { // 4.解析响应 SearchHits searchHits = response.getHits(); // 4.1.获取总条数 long total = searchHits.getTotalHits().value; System.out.println("共搜索到" + total + "条数据"); // 4.2.文档数组 SearchHit[] hits = searchHits.getHits(); // 4.3.遍历 for (SearchHit hit : hits) { // 获取文档source String json = hit.getSourceAsString(); // 反序列化 HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); System.out.println("hotelDoc = " + hotelDoc); } }
全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。
因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:
而结果解析代码则完全一致,可以抽取并共享。
完整代码如下:
@Test void testMatch() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL request.source() .query(QueryBuilders.matchQuery("all", "如家")); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
精确查询主要是两者:
与之前的查询相比,差异同样在查询条件,其它都一样。
查询条件构造的API如下:
DSL格式
在cn.itcast.hotel.service.impl
的HotelService
的search
方法中,添加一个排序功能:
完整代码:
@Override public PageResult search(RequestParams params) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query buildBasicQuery(params, request); // 2.2.分页 int page = params.getPage(); int size = params.getSize(); request.source().from((page - 1) * size).size(size); // 2.3.排序 String location = params.getLocation(); if (location != null && !location.equals("")) { request.source().sort(SortBuilders .geoDistanceSort("location", new GeoPoint(location)) .order(SortOrder.ASC) .unit(DistanceUnit.KILOMETERS) ); } // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 return handleResponse(response); } catch (IOException e) { throw new RuntimeException(e); } }
布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:
可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。
完整代码如下:
@Test void testBool() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.准备BooleanQuery BoolQueryBuilder boolQuery = QueryBuilders.boolQuery(); // 2.2.添加term boolQuery.must(QueryBuilders.termQuery("city", "杭州")); // 2.3.添加range boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250)); request.source().query(boolQuery); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
java代码逻辑:添加一个isAD字段,在算分函数的filter中判断
isAD=ture
就进行重新算分
function_score查询结构如下:
对应的JavaAPI如下:
我们可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件、算分函数、加权模式了。
// 算分控制 FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery( // 原始查询,相关性算分的查询 boolQuery, // function score的数组 new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{ // 其中的一个function score 元素 new FunctionScoreQueryBuilder.FilterFunctionBuilder( // 过滤条件 QueryBuilders.termQuery("isAD", true), // 算分函数 ScoreFunctionBuilders.weightFactorFunction(10) ) }); //将查询请求放入查询 request.source().query(functionScoreQuery);
由于这两个比较简单,所以一起写了
搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。
对应的API如下:
完整代码示例:
@Test void testPageAndSort() throws IOException { // 页码,每页大小 int page = 1, size = 5; // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query request.source().query(QueryBuilders.matchAllQuery()); // 2.2.排序 sort request.source().sort("price", SortOrder.ASC); // 2.3.分页 from、size request.source().from((page - 1) * size).size(5); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
高亮的代码与之前代码差异较大,有两点:
1)高亮请求构建
高亮请求的构建API如下:
上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。
完整代码如下:
@Test void testHighlight() throws IOException { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query request.source().query(QueryBuilders.matchQuery("all", "如家")); // 2.2.高亮 request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false)); // 3.发送请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析响应 handleResponse(response); }
2)高亮结果解析
高亮的结果与查询的文档结果默认是分离的,并不在一起。
因此解析高亮的代码需要额外处理:
代码解读:
完整代码如下:
private void handleResponse(SearchResponse response) { // 4.解析响应 SearchHits searchHits = response.getHits(); // 4.1.获取总条数 long total = searchHits.getTotalHits().value; System.out.println("共搜索到" + total + "条数据"); // 4.2.文档数组 SearchHit[] hits = searchHits.getHits(); // 4.3.遍历 for (SearchHit hit : hits) { // 获取文档source String json = hit.getSourceAsString(); // 反序列化 HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class); // 获取高亮结果 Map<String, HighlightField> highlightFields = hit.getHighlightFields(); if (!CollectionUtils.isEmpty(highlightFields)) { // 根据字段名获取高亮结果 HighlightField highlightField = highlightFields.get("name"); if (highlightField != null) { // 获取高亮值 String name = highlightField.getFragments()[0].string(); // 覆盖非高亮结果 hotelDoc.setName(name); } } System.out.println("hotelDoc = " + hotelDoc); } }
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
举例:业务代码
@Override public Map<String, List<String>> filters(RequestParams params) { try { // 1.准备Request SearchRequest request = new SearchRequest("hotel"); // 2.准备DSL // 2.1.query查询语句 buildBasicQuery(params, request); // 2.2.设置size request.source().size(0); // 2.3.聚合 buildAggregation(request); // 3.发出请求 SearchResponse response = client.search(request, RequestOptions.DEFAULT); // 4.解析结果 Map<String, List<String>> result = new HashMap<>(); Aggregations aggregations = response.getAggregations(); // 4.1.根据品牌名称,获取品牌结果 List<String> brandList = getAggByName(aggregations, "brandAgg"); result.put("品牌", brandList); // 4.2.根据品牌名称,获取品牌结果 List<String> cityList = getAggByName(aggregations, "cityAgg"); result.put("城市", cityList); // 4.3.根据品牌名称,获取品牌结果 List<String> starList = getAggByName(aggregations, "starAgg"); result.put("星级", starList); return result; } catch (IOException e) { throw new RuntimeException(e); } } private void buildAggregation(SearchRequest request) { request.source().aggregation(AggregationBuilders .terms("brandAgg") .field("brand") .size(100) ); request.source().aggregation(AggregationBuilders .terms("cityAgg") .field("city") .size(100) ); request.source().aggregation(AggregationBuilders .terms("starAgg") .field("starName") .size(100) ); } private List<String> getAggByName(Aggregations aggregations, String aggName) { // 4.1.根据聚合名称获取聚合结果 Terms brandTerms = aggregations.get(aggName); // 4.2.获取buckets List<? extends Terms.Bucket> buckets = brandTerms.getBuckets(); // 4.3.遍历 List<String> brandList = new ArrayList<>(); for (Terms.Bucket bucket : buckets) { // 4.4.获取key String key = bucket.getKeyAsString(); brandList.add(key); } return brandList; }
① 设置创建索引库(设置一个自动补全字段,类型为:completion)
② 重新插入数据
③ 查询(查询时要设置这个自动补全操作的名称,并且指定那个类型为completion的字段)
④ 分解结果(结果也需要根据之前设置这个自动查询操作的名称来取)
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。
下载拼音分词器记得版本要和ES对应,不对应会报错
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/421646
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。