当前位置:   article > 正文

NLP:从头开始的文本矢量化方法_nlp 文件向量化

nlp 文件向量化

一、说明

        NLP 项目使用文本,但机器学习算法不能使用文本,除非将其转换为数字表示。这种表示通常称为向量,它可以应用于文本的任何合理单位:单个标记、n-gram、句子、段落,甚至整个文档。

        在整个语料库的统计 NLP 中,应用了不同的向量化技术,例如 one-hot、计数或频率编码。在神经 NLP 中,词向量(也称为词嵌入)占主导地位。可以使用预先训练的向量以及复杂神经网络中学习的向量表示。

        本文解释并展示了所有提到的向量化技术的 Python 实现:one-hot 编码、计数器编码(词袋)、词频以及最后的词向量。

本文的技术背景是和几个Python v3.11附加库:gensim v4.3.1pandas v2.0.1numpy v1.26.1nltk v3.8.1scikit-learn v1.2.2所有示例也应该适用于较新的库版本。

本文最初出现在我的博客

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/425424
推荐阅读
相关标签
  

闽ICP备14008679号