赞
踩
path: ../datasets/VOCdevkit
train: images/train # train images (relative to 'path') 128 images
val: images/val # val images (relative to 'path') 128 images
test: # test images (optional)
names:
0: name1
1: name2
.....
1.首先在yolov8–>ultralytics–>nn–>model.py添加你自己的新模型
2.然后在yolov8–>ultralytics–>nn–>task.py–>parse_model解析文件里面导入并添加你的模块
3.修改yolov8n.yaml文件
from ultralytics import YOLO
if __name__ == '__main__':
# 加载模型
model = YOLO("./v8_cfg/yolov8n-test.yaml") # build a new model from scratch
results =model.train(data="data.yaml" ,epochs=500, model="yolov8n-test.yaml",imgsz=640,batch=30,workers = 2)
""" 添加代码bug """
ckpt = torch.load('yolov8n.pt')
csd = ckpt['model'].float().state_dict()
csd = intersect_dicts(csd,self.model.state_dict())
self.model.load_state_dict(csd,strict = False)
print(f'Transferred {len(csd)}/{len(self.model.state_dict())} items')
""" 添加代码bug """
self.trainer = TASK_MAP[self.task][1](overrides=overrides)
# if not overrides.get('resume'): # manually set model only if not resuming
# self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
# self.model = self.trainer.model
self.trainer.model = self.model
from ultralytics import YOLO
if __name__ == '__main__':
# Load a model
model = YOLO("best.pt")
# Predict with the model
results = model(source="v8_images",save=True,device= "cuda:0") # predict on an image
from ultralytics import YOLO if __name__ == '__main__': # 直接使用预训练模型创建模型. # model = YOLO('yolov8n.pt') # model.train(**{'cfg':'ultralytics/cfg/exp1.yaml', 'data':'dataset/data.yaml'}) # 使用yaml配置文件来创建模型,并导入预训练权重. model = YOLO('ultralytics/cfg/models/v8/yolov8n.yaml') model.load('yolov8n.pt') model.train(**{'cfg':'ultralytics/cfg/PCB.yaml', 'data':'datasets/VOCPCB.yaml'}) # 模型验证 # model = YOLO('runs/detect/train11/weights/best.pt') # model.val(**{'cfg':'ultralytics/cfg/PCB.yaml', 'data':'datasets/VOCPCB.yaml'}) # 模型推理 # model = YOLO('runs/detect/yolov8n_exp/best.pt') # model.predict(source='dataset/images/test', **{'save':True}) # 模型导出 # model = YOLO("Weight/yolov8n.pt") # load an official model # model.export(format="onnx")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。