当前位置:   article > 正文

YOLOv8 测试 5:Linux 中 Docker 部署 YOLOv8,Python 封装 API 接口,base64 图片处理

YOLOv8 测试 5:Linux 中 Docker 部署 YOLOv8,Python 封装 API 接口,base64 图片处理

一、前言

记录时间 [2024-4-14]

系列文章简摘:
Docker 学习笔记(二):在 Linux 中部署 Docker(Centos7 下安装 docker、环境配置,以及镜像简单使用)
API 接口简单使用(二):Python 中使用 Flask(接口封装整理版,含文件上传接口的详细实现)
YOLOv8 测试 3:在 Python 中将 YOLOv8 模型封装成 API 接口使用(上传测试图片并返回识别结果,附测试代码)
YOLOv8 测试 4:在 Linux 中使用 Docker 部署 YOLOv8 模型,并使用简单的命令行脚本测试模型

更多 YOLOv8 测试相关文章请参考上面专栏哦。

本文在 YOLOv8 测试 3 和 4 的基础上开展,在测试 3 中,介绍 Windows 中使用 Python 将 YOLOv8 模型封装成 API 接口来调用;在测试 4 中,介绍 Linux 中使用 Docker 部署 YOLOv8 模型。

综合测试 3 和 4,本文主要实现在 Linux 中 使用 Docker 部署 YOLOv8 模型,并借助 Python 封装 API 接口来调用。在此基础上,再介绍 base64 格式图片的处理方法,最后通过接口上传图片的 base64 格式编码,得到接口返回识别结果


二、思路整理

  • 在本地 PyCharm 中完成项目开发
    • 使用 Flask 框架编写 API 接口
    • base64 格式图片处理
    • YOLOv8 模型的 predict 使用
  • 在 Linux 中部署 Docker,操作系统为 CentOS 7
    • 准备 Linux 云服务器 / 虚拟机
    • 安装并配置 Docker
    • 熟悉 Docker 的镜像容器操作
  • 在 Conda 容器中部署 YOLOv8 项目
    • 通过 FinalShell 把本地项目上传到 Linux 服务器中
    • 部署一个 conda 镜像
    • 配置端口暴露,数据卷挂载
    • 通过数据卷挂载 YOLOv8 项目到容器中
  • 使用 Postman 测试 API 接口
    • 上传图片的 base64 格式编码文件
    • 得到接口返回的图片识别结果

三、YOLOv8 项目开发

在本地 PyCharm 中完成项目开发,更详细的步骤请参考这篇文章

1. 依赖配置

使用 PyCharm 打开我们之前使用过的,从仓库下载的 YOLOv8 项目 ultralytics-main,找到 tests 目录,在该目录下新建 base64_test.py 文件

并在 ultralytics-main/tests/tmp/ 目录下,新建 upload 文件夹,用来存放接口上传的文件;新建 save 文件夹,用来存放项目保存的文件;

在 base64_test.py 文件中导入 YOLOv8 项目运行所需的依赖和配置:

# Ultralytics YOLO 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/478902
推荐阅读
相关标签