赞
踩
知识图谱(Knowledge Graph)作为大数据时代的重要设施基础,已经在下一代搜索引擎、智能问答系统,文本处理,自然语言处理等智能应用中有了广泛应用。知识图谱规范地定义了知识的存储,并且可以较为方便和高效的进行知识推理和决策。面向特定领域的知识图谱应用研究也越来越多。当前,基于机器人领域的知识图谱应用热度持续升高,但配套的智能问答系统相关技术尚不成熟。
知识图谱并非是一个全新的概念,早在2006年,文献[5]就提出了语义网的概念,呼吁推广、完善使用本体模型来形式化表达数据中的隐含语义,RDF(resource description framework)模式(RDF schema)和万维网本体语言(Web ontology language,OWL)的形式化模型就是基于上述目的产生的。随后掀起了一场语义网研究的热潮,知识图谱技术的出现正是基于以上相关研究,是对语义网标准与技术的一次扬弃与升华。知识图谱于2012年5月17日被Google正式提出[6],其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。目前,随着智能信息服务应用的不断发展,知识图谱已被广泛应用于智能搜索、智能问答、个性化推荐等领域。尤其是在智能搜索中,用户的搜索请求不再局限于简单的关键词匹配,搜索将根据用户查询的情境与意图进行推理,实现概念检索。与此同时,用户的搜索结果将具有层次化、结构化等重要特征。例如,用户搜索的关键词为梵高,引擎就会以知识卡片的形式给出梵高的详细生平、艺术生涯信息、不同时期的代表作品,并配合以图片等描述信息。知识图谱能够使计算机理解人类的语言交流模式,从而更加智能地反馈用户需要的答案[7]。与此同时,通过知识图谱能够将Web上的信息、数据以及链接关系聚集为知识,使信息资源更易于计算、理解以及评价,并且形成一套Web语义知识库。
知识图谱具有如下 3 种特点:① 数据及知识的存储结构为有向图结构。有向图结构允许知识图谱有效地存储数据和知识之间的关联关系;② 具备高效的数据和知识检索能力。知识图谱可以通过图匹配算法,实现高效的数据和知识访问;③ 具备智能化的数据和知识推理能力。知识图谱可以自动化、智能化地从已有的知识中发现和推理多角度的隐含知识。
(1)关系的表达能力强
传统数据库通常通过表格、字段等方式进行读取,而关系的层级及表达方式多种多样,且基于图论和概率图模型,可以处理复杂多样的关联分析,满足企业各种角色关系的分析和管理需要。
(2)像人类思考一样去做分析
基于知识图谱的交互探索式分析,可以模拟人的思考过程去发现、求证、推理,业务人员自己就可以完成全部过程,不需要专业人员的协助。
(3)知识学习
利用交互式机器学习技术,支持根据推理、纠错、标注等交互动作的学习功能,不断沉淀知识逻辑和模型,提高系统智能性,将知识沉淀在企业内部,降低对经验的依赖。
(4)高速反馈
图式的数据存储方式,相比传统存储方式,数据调取速度更快,图库可计算超过百万潜在的实体的属性分布,可实现秒级返回结果,真正实现人机互动的实时响应,让用户可以做到即时决策。
知识图谱最早的应用是提升搜索引擎的能力。随后,知识图谱在辅助智能问答、自然语言理解、大数据分析、推荐计算、物联网设备互联、可解释性机器人等多个方面展现出丰富的应用价值。
1.4.1辅助机器人嵌入式的********搜索
互联网的终极形态是万物的互联,而搜索的终极目标是对万物的直接搜索。传统搜索引擎依靠网页之间的超链接实现网页的搜索,而语义搜索是直接对事物进行搜索,如人物、机构、地点等。这些事物可能来自文本
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。