当前位置:   article > 正文

燃爆!17行Python代码做情感分析?你也可以的(附零基础学习资料)_python情感分析

python情感分析

前言

17行代码跑最新NLP模型?你也可以!

一台可以上网的电脑

基本的python代码阅读能力,用于修改几个模型参数

对百度中文NLP最新成果的浓烈兴趣

训练模型:Senta情感分析模型基本简介 (文末送福利)

在这里插入图片描述
Senta是百度NLP开放的中文情感分析模型,可以用于进行中文句子的情感分析,输出结果为{正向/中性/负向}中的一个,关于模型的结构细节,请查看Senta----github.com/PaddlePaddle/Paddlehub/demo/senta

本示例代码选择的是Senta-BiLSTM模型

模型来源:Paddlehub简介

PaddleHub是基于PaddlePaddle开发的预训练模型管理工具,可以借助预训练模型更便捷地开展迁移学习工作。

本次评测中只使用了预训练模型,没有进行fine-tune

代码运行环境:百度 AI studio

实验代码

来自paddlehub/senta_demo.py

import json

import os

import six

import paddlehub as hub

if name == “main”:

#加载senta模型

senta = hub.Module(name=“senta_bilstm”)

#把要测试的短文本以str格式放到这个列表里

test_text = [

“这家餐厅不是很好吃”,

“这部电影差强人意”,

]

#指定模型输入

input_dict = {“text”: test_text}

#把数据喂给senta模型的文本分类函数

results = senta.sentiment_classify(data=input_dict)

#遍历分析每个短文本

for index, text in enumerate(test_text):

results[index][“text”] = text

for index, result in enumerate(results):

if six.PY2:

print(

json.dumps(results[index], encoding=“utf8”, ensure_ascii=False))

else:

print(‘text: {}, predict: {}’.format(results[index][‘text’],results[index][‘sentiment_key’]))

详细测评

成语情感分析

Input

test_text = [

‘沧海桑田’, # 中型,世事变化很大

‘下里巴人’, # 褒义,通俗的文学艺术

‘有口皆碑’, # 褒义,对突出的好人好事一致颂扬

‘危言危行’, # 褒义,说正直的话,做正直的事

‘鬼斧神工’, # 褒义,指大自然美景

‘不赞一词’, # 褒义,不能再添一句话,表示写的很好

‘文不加点’, # 褒义,指写作技巧高超

‘差强人意’, # 褒义,大体还能使人满意

‘无微不至’, # 褒义,指细心周到

‘事倍功半’, # 褒义,指不费力就有好的效果

‘事半功倍’, # 贬义,指浪费了力气却没有好效果

‘蠢蠢欲动’, # 贬义,指要干坏事

‘面目全非’, # 贬义,指大破坏

‘江河日下’, # 贬义,指事物日渐衰落

‘评头论足’, # 贬义,指小节过分挑剔

‘生灵涂炭’, # 贬义,指人民极端困苦

‘始作俑者’, # 贬义,第一个做坏事的人

‘无所不为’, # 贬义,什么坏事都干

‘无所不至’, # 贬义,什么坏事都干

‘阳春白雪’, # 贬义,高深不容易理解的艺术

]

Output

运行耗时: 4秒480毫秒

text: 沧海桑田, positive_prob: 0.3838, predict: negative # 错误

text: 下里巴人, positive_prob: 0.7957, predict: positive

text: 有口皆碑, positive_prob: 0.906, predict: positive

text: 危言危行, positive_prob: 0.588, predict: positive

text: 鬼斧神工, positive_prob: 0.657, predict: positive

text: 不赞一词, positive_prob: 0.9698, predict: positive

text: 文不加点, positive_prob: 0.1284, predict: negative # 错误

text: 差强人意, positive_prob: 0.0429, predict: negative # 错误

text: 无微不至, positive_prob: 0.8997, predict: positive

text: 事倍功半, positive_prob: 0.6181, predict: positive

text: 事半功倍, positive_prob: 0.8558, predict: positive # 错误

text: 蠢蠢欲动, positive_prob: 0.7353, predict: positive # 错误

text: 面目全非, positive_prob: 0.2186, predict: negative

text: 江河日下, positive_prob: 0.2753, predict: negative

text: 评头论足, positive_prob: 0.6737, predict: positive # 错误

text: 生灵涂炭, positive_prob: 0.4661, predict: neutral # 错误

text: 始作俑者, positive_prob: 0.247, predict: negative

text: 无所不为, positive_prob: 0.5948, predict: positive # 错误

text: 无所不至, positive_prob: 0.553, predict: positive # 错误

text: 阳春白雪, positive_prob: 0.7552, predict: positive # 错误

正确率:10/20 = 50%

转折复句情绪分析

Input

test_text = [

‘小明虽然考了第一,但是他一点也不骄傲’, # 积极

‘你不是不聪明,而是不认真’, # 消极

‘虽然小明很努力,但是他还是没有考100分’, # 消极

‘虽然小明有时很顽皮,但是他很懂事’, # 积极

‘虽然这座桥已经建了很多年,但是她依然很坚固’, # 积极

‘他虽然很顽皮,但是学习很好’, # 积极

‘学习不是枯燥无味,而是趣味横生’, # 积极

‘虽然很困难,但是我还是不会退缩’, # 积极

‘虽然小妹妹只有5岁,但是她能把乘法口诀倒背如流’, # 积极

‘虽然我很过分,但是都是为了你好’, # 积极

‘小明成绩不好,不是因为不聪明,而是因为不努力’, # 消极

‘虽然这样做不妥当,但已经是最好的选择’, # 积极

‘这次虽然失败,但却是成功的开始’, # 积极

‘虽然这道题很难,但是我相信我会把它做出来’, # 积极

‘虽然爷爷已经很老了,但是他还是坚持每天做运动’, # 积极

‘不是没有美,而是我们缺少发现美的眼光’, # 消极

‘虽然他们有良好的生活条件,但是浪费资源迟早会带来恶果’, # 消极

‘他不是我们的敌人,而是我们的朋友’, # 积极

‘他不是不会做,而是不想做’, # 消极

‘虽然那个梦想看起来离我遥不可及,但是我相信经过我的努力它一定会实现’, # 积极

]

Output

运行耗时: 2秒667毫秒

text: 小明虽然考了第一,但是他一点也不骄傲, positive_prob: 0.9598,

predict: positive

text: 你不是不聪明,而是不认真, positive_prob: 0.0275,

predict: negative

text: 虽然小明很努力,但是他还是没有考100分, positive_prob: 0.7188,

predict: positive # 错误

text: 虽然小明有时很顽皮,但是他很懂事, positive_prob: 0.8776,

predict: positive

text: 虽然这座桥已经建了很多年,但是她依然很坚固, positive_prob: 0.9782,

predict: positive

text: 他虽然很顽皮,但是学习很好, positive_prob: 0.9181,

predict: positive

text: 学习不是枯燥无味,而是趣味横生, positive_prob: 0.3279,

predict: negative # 错误

text: 虽然很困难,但是我还是不会退缩, positive_prob: 0.3974,

predict: negative # 错误

text: 虽然小妹妹只有5岁,但是她能把乘法口诀倒背如流, positive_prob: 0.5124,

predict: neutral

text: 虽然我很过分,但是都是为了你好, positive_prob: 0.399,

predict: negative # 错误

text: 小明成绩不好,不是因为不聪明,而是因为不努力, positive_prob: 0.1881,

predict: negative

text: 虽然这样做不妥当,但已经是最好的选择, positive_prob: 0.806,

predict: positive

text: 这次虽然失败,但却是成功的开始, positive_prob: 0.4862,

predict: neutral # 错误

text: 虽然这道题很难,但是我相信我会把它做出来, positive_prob: 0.3959,

predict: negative # 错误

text: 虽然爷爷已经很老了,但是他还是坚持每天做运动, positive_prob: 0.9178,

predict: positive

text: 不是没有美,而是我们缺少发现美的眼光, positive_prob: 0.5614,

predict: positive

text: 虽然他们有良好的生活条件,但是浪费资源迟早带来恶果, positive_prob: 0.1086,

predict: negative

text: 他不是我们的敌人,而是我们的朋友, positive_prob: 0.3749,

predict: negative # 错误

text: 他不是不会做,而是不想做, positive_prob: 0.1247,

predict: negative

text: 虽然那个梦想看起来离我遥不可及,但是我相信经过我的努力它一定会实现, positive_prob: 0.957,

predict: positive

正确率:13/20 = 65%

具体场景情绪分析

Input

test_text = [

‘这车耗油很快’,

‘这车开的很快’,

‘这房间有一股死老鼠味道’,

‘这房间有烟味’,

‘他的发型像杀马特’,

‘这衣服机洗掉色’,

‘这衣服穿多了起球’,

‘这软件容易闪退’,

‘他打球的样子像蔡徐坤’,

‘这把20了’,

‘这把可以打’,

‘他射球的样子像科比’,

‘这房间的布置很有情调’,

‘这酒让人回味’,

‘这衣服很酷’,

‘他的侧脸好像林峰’,

‘五星好评’,

‘以后会回购的’,

‘性价比很高’,

‘物美价廉’,

‘这女生让我心动’

]

Output

运行耗时: 2秒676毫秒

text: 这车耗油很快, positive_prob: 0.2926, predict: negative

text: 这车开的很快, positive_prob: 0.8478, predict: positive

text: 这房间有一股死老鼠味道, positive_prob: 0.0071, predict: negative

text: 这房间有烟味, positive_prob: 0.2071, predict: negative

text: 他的发型像杀马特, positive_prob: 0.3445, predict: negative

text: 这衣服机洗掉色, positive_prob: 0.3912, predict: negative

text: 这衣服穿多了起球, positive_prob: 0.679, predict: positive # 错误

text: 这软件容易闪退, positive_prob: 0.0051, predict: negative

text: 他打球的样子像蔡徐坤, positive_prob: 0.8684, predict: positive # 错误

text: 这把20了, positive_prob: 0.1695, predict: negative

text: 这把可以打, positive_prob: 0.3503, predict: negative # 错误

text: 他射球的样子像科比, positive_prob: 0.7263, predict: positive

text: 这房间的布置很有情调, positive_prob: 0.9519, predict: positive

text: 这酒让人回味, positive_prob: 0.7431, predict: positive

text: 这衣服很酷, positive_prob: 0.9817, predict: positive

text: 他的侧脸好像林峰, positive_prob: 0.5621, predict: positive

text: 五星好评, positive_prob: 0.9971, predict: positive

text: 以后会回购的, positive_prob: 0.6903, predict: positive

text: 性价比很高, positive_prob: 0.9799, predict: positive

text: 物美价廉, positive_prob: 0.9542, predict: positive

text: 这女生让我心动, positive_prob: 0.956, predict: positive

正确率:17/20 = 85%

总结,三个不同类别的测评如下所示:
在这里插入图片描述

总结

1.模型计算耗时较小,使用体验不错。

2.成语情感分析方面,我专门挑选的是一些比较难从字面理解的,容易混淆情感的成语(比如差强人意被判定为消极),这些也是高考常考的内容。虽然最后模型正确率只有一般,但是我认为是可以接受的,适当增加成语语句作为训练语料会使模型"更懂"中文。

大家有兴趣的可以试一试一些比较容易从字面理解情感的成语,我觉得得分会比本次评测的结果要好。

3.转折语句情感分析本身也是对模型的一种挑战,实测效果为65分,个人觉得模型对于像“但是”,“虽然”这样的词语没有足够的attention,因为这些转折词背后的语义往往才是最影响整个句子的情感的,最终评分65分,个人认为模型在这方面表现一般。

4.评分最好看的是具体场景情感分析,大概预训练语料中有大量的淘宝评价?像杀马特 20科比这些小字眼是判定情感的关键,而模型也确实捕捉到并判断出来了,这点比较让我惊喜。

如果你也对Python感兴趣的话,可以试试这套python学习资料,毕竟小编也是用这套方法自学的

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑培训的。

一方面是学习时间相对较短,学习内容更全面更集中。

零基础Python学习资源介绍

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/72786

推荐阅读
相关标签