当前位置:   article > 正文

记忆化递归(记忆化搜索)

记忆化递归

前言

前一篇博客写到入门的dp算法,后来又遇到一个奇怪的变种题目,同样也是可以用dp写的(至少标签是有动态规划)。我看了答案还是有些不能完全理解,于是又去b站翻了翻教程基础DP,其中提到记忆化的递归(也称记忆化搜索),相当于结合了dp和递归的优点(这时我又觉得比DP还厉害),然后就准备写写记忆化递归。


目录

1.记忆化递归的解释与分析

2.记忆化递归的应用


一、记忆化递归的解释与分析

前面说道它结合了dp和递归的优点,分别是记忆化逻辑清晰易懂

下面还是结合斐波那契数列的来理解:

F(0)=F(1)=1;

F(n)=F(n-1)+F(n-2) (n≥2,n∈N*);

这里直接给出函数代码,再进行解释:

int F(int n){
    if(n<2)f[n]=1;			//这里f[]是储存数据的数组
	else if(f[n]==0)		//这里是重点
		f[n]=F(n-1)+F(n-2);
	return f[n];
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

代码解释:

第3行中else if的条件很关键:当f[n]没被计算过,就计算一次。也就是说,如果f[n]已经被计算过储存起来了,那就直接用储存的数据,便不用再计算了。

分析优势:

相对于递归,逻辑清晰易懂,就不用说了。

主要是相对于dp的优势。从上一篇知道dp是将基础全部算出来,然后在这个基础上计算出我们要的那个值,减少了相对普通递归的重复计算。

记忆化递归则更加”投机取巧“了,它只计算了需要用的值并储存起来,而其它不会用到的值不去计算,最大化地减少了计算。打个比方,dp就相当于计算了一个方阵上所有的点(无论有没有利用价值),而记忆化递归相当于计算了方阵上有价值的点,因此记忆化递归的运行时间可能比dp还要短。(注意只是可能,因为斐波那契数列无论是dp还是记忆化递归,都是要把前面的值全部算出来的)


二、记忆化递归的应用

感觉没啥写的,就拿分配宝藏来写shui一写shui吧。题目在这里

#include <stdio.h>
int W[201],sum,d[201][20001];
int f(int k,int load);
int max(int a,int b);
int main(void){
	int n;
	scanf("%d",&n);
	for (int i = 1; i <= n; ++i){
		scanf("%d",&W[i]);
		sum+=W[i];
	}
	printf("%d\n",sum-2*f(n,sum/2));
	return 0;
}
int f(int k,int load){
	int ret=d[k][load];
	if(ret==0){					//这里就是判断是否被计算过
		if(k==0||load==0)return ret;
		if(W[k]>load)ret=f(k-1,load);
		else
			ret=d[k][load]=max( f(k-1,load),(f(k-1,load-W[k])+W[k]) );
	}
	return ret;
}
int max(int a,int b){
	int m = a;
	if( a < b) m = b;
	return m;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
'
运行

我交上去的时候显示运行时间和用dp写的一样。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/1003339
推荐阅读
相关标签
  

闽ICP备14008679号