赞
踩
首先下载数据
class CNN(nn.Module): def __init__(self): super(CNN,self).__init__() ''' 一般来说,卷积网络包括以下内容: 1.卷积层 2.神经网络 3.池化层 ''' self.conv1=nn.Sequential( nn.Conv2d( #--> (1,28,28) in_channels=1, #传入的图片是几层的,灰色为1层,RGB为三层 out_channels=16, #输出的图片是几层 kernel_size=5, #代表扫描的区域点为5*5 stride=1, #就是每隔多少步跳一下 padding=2, #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=2 ), # 2d代表二维卷积 --> (16,28,28) nn.ReLU(), #非线性激活层 nn.MaxPool2d(kernel_size=2), #设定这里的扫描区域为2*2,且取出该2*2中的最大值 --> (16,14,14) ) self.conv2=nn.Sequential( nn.Conv2d( # --> (16,14,14) in_channels=16, #这里的输入是上层的输出为16层 out_channels=32, #在这里我们需要将其输出为32层 kernel_size=5, #代表扫描的区域点为5*5 stride=1, #就是每隔多少步跳一下 padding=2, #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2= ), # --> (32,14,14) nn.ReLU(), nn.MaxPool2d(kernel_size=2), #设定这里的扫描区域为2*2,且取出该2*2中的最大值 --> (32,7,7),这里是三维数据 ) self.out=nn.Linear(32*7*7,10) #注意一下这里的数据是二维的数据 def forward(self,x): x=self.conv1(x) x=self.conv2(x) #(batch,32,7,7) #然后接下来进行一下扩展展平的操作,将三维数据转为二维的数据 x=x.view(x.size(0),-1) #(batch ,32 * 7 * 7) output=self.out(x) return output
# 添加优化方法
optimizer=torch.optim.Adam(cnn.parameters(),lr=LR)
# 指定损失函数使用交叉信息熵
loss_fn=nn.CrossEntropyLoss()
step=0 for epoch in range(EPOCH): #加载训练数据 for step,data in enumerate(train_loader): x,y=data #分别得到训练数据的x和y的取值 b_x=Variable(x) b_y=Variable(y) output=cnn(b_x) #调用模型预测 loss=loss_fn(output,b_y)#计算损失值 optimizer.zero_grad() #每一次循环之前,将梯度清零 loss.backward() #反向传播 optimizer.step() #梯度下降 #每执行50次,输出一下当前epoch、loss、accuracy if (step%50==0): #计算一下模型预测正确率 test_output=cnn(test_x) y_pred=torch.max(test_output,1)[1].data.squeeze() accuracy=sum(y_pred==test_y).item()/test_y.size(0) print('now epoch : ', epoch, ' | loss : %.4f ' % loss.item(), ' | accuracy : ' , accuracy)
import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision #Hyper prameters EPOCH=1 BATCH_SIZE=50 LR=0.001 DOWNLOAD_MNIST=False train_data = torchvision.datasets.MNIST( root='./mnist', train=True, transform=torchvision.transforms.ToTensor(), #将下载的文件转换成pytorch认识的tensor类型,且将图片的数值大小从(0-255)归一化到(0-1) download=DOWNLOAD_MNIST ) train_loader=Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) test_data=torchvision.datasets.MNIST( root='./mnist', train=False, ) with torch.no_grad(): test_x=Variable(torch.unsqueeze(test_data.data, dim=1)).type(torch.FloatTensor)[:2000]/255 #只取前两千个数据吧,差不多已经够用了,然后将其归一化。 test_y=test_data.targets[:2000] '''开始建立CNN网络''' class CNN(nn.Module): def __init__(self): super(CNN,self).__init__() ''' 一般来说,卷积网络包括以下内容: 1.卷积层 2.神经网络 3.池化层 ''' self.conv1=nn.Sequential( nn.Conv2d( #--> (1,28,28) in_channels=1, #传入的图片是几层的,灰色为1层,RGB为三层 out_channels=16, #输出的图片是几层 kernel_size=5, #代表扫描的区域点为5*5 stride=1, #就是每隔多少步跳一下 padding=2, #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=2 ), # 2d代表二维卷积 --> (16,28,28) nn.ReLU(), #非线性激活层 nn.MaxPool2d(kernel_size=2), #设定这里的扫描区域为2*2,且取出该2*2中的最大值 --> (16,14,14) ) self.conv2=nn.Sequential( nn.Conv2d( # --> (16,14,14) in_channels=16, #这里的输入是上层的输出为16层 out_channels=32, #在这里我们需要将其输出为32层 kernel_size=5, #代表扫描的区域点为5*5 stride=1, #就是每隔多少步跳一下 padding=2, #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2= ), # --> (32,14,14) nn.ReLU(), nn.MaxPool2d(kernel_size=2), #设定这里的扫描区域为2*2,且取出该2*2中的最大值 --> (32,7,7),这里是三维数据 ) self.out=nn.Linear(32*7*7,10) #注意一下这里的数据是二维的数据 def forward(self,x): x=self.conv1(x) x=self.conv2(x) #(batch,32,7,7) #然后接下来进行一下扩展展平的操作,将三维数据转为二维的数据 x=x.view(x.size(0),-1) #(batch ,32 * 7 * 7) output=self.out(x) return output cnn=CNN() # print(cnn) # 添加优化方法 optimizer=torch.optim.Adam(cnn.parameters(),lr=LR) # 指定损失函数使用交叉信息熵 loss_fn=nn.CrossEntropyLoss() ''' 开始训练我们的模型哦 ''' step=0 for epoch in range(EPOCH): #加载训练数据 for step,data in enumerate(train_loader): x,y=data #分别得到训练数据的x和y的取值 b_x=Variable(x) b_y=Variable(y) output=cnn(b_x) #调用模型预测 loss=loss_fn(output,b_y)#计算损失值 optimizer.zero_grad() #每一次循环之前,将梯度清零 loss.backward() #反向传播 optimizer.step() #梯度下降 #每执行50次,输出一下当前epoch、loss、accuracy if (step%50==0): #计算一下模型预测正确率 test_output=cnn(test_x) y_pred=torch.max(test_output,1)[1].data.squeeze() accuracy=sum(y_pred==test_y).item()/test_y.size(0) print('now epoch : ', epoch, ' | loss : %.4f ' % loss.item(), ' | accuracy : ' , accuracy) ''' 打印十个测试集的结果 ''' test_output=cnn(test_x[:10]) y_pred=torch.max(test_output,1)[1].data.squeeze() #选取最大可能的数值所在的位置 print(y_pred.tolist(),'predecton Result') print(test_y[:10].tolist(),'Real Result')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。