赞
踩
小美拿到了一个n∗n的矩阵,其中每个元素是 0 或者 1。
小美认为一个矩形区域是完美的,当且仅当该区域内 0 的数量恰好等于 1 的数量。
现在,小美希望你回答有多少个i∗i的完美矩形区域。你需要回答1≤i≤n的所有答案
输入描述:
第一行输入一个正整数n,代表矩阵大小。
接下来的n行,每行输入一个长度为n的 01 串,用来表示矩阵。
输出描述:
输出n行,第i行输出i*i的完美矩形区域的数量
示例1
输入例子:
4
1010
0101
1100
0011
输出例子:
0
7
0
1
不太会用java的ACM模式,输入都想了很久。。。
import java.util.Scanner; public class Main { public static int judge(int[][] s, int x, int y, int k){ int x2 = x + k - 1; int y2 = y + k - 1; return s[x2][y2] - s[x2][y - 1] - s[x - 1][y2] + s[x - 1][y - 1]; } public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); char[][] aa = new char[n][n]; int[][] s = new int[n + 1][n + 1]; String[] t = new String[n]; for(int i = 0; i < n; i++){ t[i] = in.next(); aa[i] = t[i].toCharArray(); } for (int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ s[i][j] = aa[i - 1][j - 1] - '0'; } } for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ s[i][j] += s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1]; } } int[] ans = new int[n + 1]; ans[1] = 0; for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ for(int k = 2; k <= n; k++){ if(i + k - 1 <= n && j + k - 1 <= n){ int tt = judge(s, i, j, k); if(tt * 2 == k * k){ ans[k] ++; } } } } } for (int i = 1; i <= n; i++){ System.out.println(ans[i]); } } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。