赞
踩
《我的世界》(Minecraft)别称《麦块》《我的作品》《当个创世神》,是一款沙盒建造游戏,该游戏基于Java平台,最初由马库斯·诺奇·佩尔松单独开发,后由Mojang制作发行。网易则是中国大陆地区的独家运营商。于2014年9月4日在PS4、XboxOne发布,于2017年5月12日在Switch发布,于2017年8月8日在PC发布。
玩家可以独自一人或与朋友们一起,探索随机生成的世界。在Minecraft的创造模式中,玩家将拥有无限的资源;而在生存模式中,玩家需要尽可能收集利用资源,打造武器和盔甲,去抵御危险的怪物。
而今天我们要做的简易版《Minecraft》,则负责了地形生成,人物移动,破坏、放置方块等内容的开发。
废话不多说,开始吧!
我的Python 3.10.9,pyglet 1.5.27。
pyglet是python的一个第三方库,下载方法也很简单,在Windows的cmd下输入:
pip install pyglet
即可。
拿走不谢~
Minecraft方块图
将图像重命名为 texture.png
首先,我们需要用到刚刚下的pyglet库中的一些程序,以及关于系统,数学运算,时间,随机数等的自带库。
引用如下:
- from __future__ import division
-
- import sys
- import math
- import random
- import time
-
- from collections import deque
- from pyglet import image
- from pyglet.gl import *
- from pyglet.graphics import TextureGroup
- from pyglet.window import key, mouse
设计一个游戏,自然会涉及到的一些变量或常量就是人物的坐标、走路的大小、人物的大小、移动速度、重力、帧数等。在这一模块中,还会引用到一些方块的设定、一些常用的函数等。
代码如下,写了注释,自己研究吧。
- # 每秒帧数
- TICKS_PER_SEC = 120
-
- # 你可以走的大小
- SECTOR_SIZE =2000
-
- # 行走速度与飞行速度
- WALKING_SPEED = 5.5
- FLYING_SPEED = 15
-
- # 重力与跳跃高度
- GRAVITY = 20
- MAX_JUMP_HEIGHT =1
-
- # About the height of a block.
- # To derive the formula for calculating jump speed, first solve
- # v_t = v_0 + a * t
- # for the time at which you achieve maximum height, where a is the acceleration
- # due to gravity and v_t = 0. This gives:
- # t = - v_0 / a
- # Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
- # s = s_0 + v_0 * t + (a * t^2) / 2
- JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
- TERMINAL_VELOCITY = 50
-
- PLAYER_HEIGHT = 2
-
- if sys.version_info[0] >= 3:
- xrange = range
-
- def cube_vertices(x, y, z, n):
- """ Return the vertices of the cube at position x, y, z with size 2*n.
- """
- return [
- x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
- x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
- x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
- x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
- x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
- x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
- ]
-
-
- def tex_coord(x, y, n=4):
- """
- Return the bounding vertices of the texture square.
- """
- m = 1.0 / n
- dx = x * m
- dy = y * m
- return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
-
-
- def tex_coords(top, bottom, side):
- """
- Return a list of the texture squares for the top, bottom and side.
- """
- top = tex_coord(*top)
- bottom = tex_coord(*bottom)
- side = tex_coord(*side)
- result = []
- result.extend(top)
- result.extend(bottom)
- result.extend(side * 4)
- return result
-
-
- TEXTURE_PATH = 'Minecraft(1)/texture.png'
-
- GRASS = tex_coords((1, 0), (0, 1), (0, 0))
- SAND = tex_coords((1, 1), (1, 1), (1, 1))
- BRICK = tex_coords((2, 0), (2, 0), (2, 0))
- STONE = tex_coords((2, 1), (2, 1), (2, 1))
- PURPLE = tex_coords((3, 1), (3, 1), (3, 1))
- RED = tex_coords((3, 0), (3, 0), (3, 0))
- GREEN = tex_coords((3, 2), (3, 2), (3, 2))
- BLUE = tex_coords((1, 2), (1, 2), (1, 2))
- BLACK = tex_coords((2, 2), (2, 2), (2, 2))
- ORANGE = tex_coords((3, 2), (3, 2), (3, 2))
-
- FACES = [
- ( 0, 1, 0),
- ( 0,-1, 0),
- (-1, 0, 0),
- ( 1, 0, 0),
- ( 0, 0, 1),
- ( 0, 0,-1),
- ]
-
-
- def normalize(position):
- """ Accepts `position` of arbitrary precision and returns the block
- containing that position.
- Parameters
- ----------
- position : tuple of len 3
- Returns
- -------
- block_position : tuple of ints of len 3
- """
- x, y, z = position
- x, y, z = (int(round(x)), int(round(y)), int(round(z)))
- return (x, y, z)
-
-
- def sectorize(position):
- """ Returns a tuple representing the sector for the given `position`.
- Parameters
- ----------
- position : tuple of len 3
- Returns
- -------
- sector : tuple of len 3
- """
- x, y, z = normalize(position)
- x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
- return (x, 0, z)
生成一个世界,首先要做到的是用很多个数组、字典、列表、集合等来存储一些必要的信息,比如每个方块的位置等。
- class Model(object):
-
- def __init__(self):
-
- # A Batch is a collection of vertex lists for batched rendering.
- self.batch = pyglet.graphics.Batch()
-
- # A TextureGroup manages an OpenGL texture.
- self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())
-
- # A mapping from position to the texture of the block at that position.
- # This defines all the blocks that are currently in the world.
- self.world = {}
-
- # Same mapping as `world` but only contains blocks that are shown.
- self.shown = {}
-
- # Mapping from position to a pyglet `VertextList` for all shown blocks.
- self._shown = {}
-
- # Mapping from sector to a list of positions inside that sector.
- self.sectors = {}
-
- # Simple function queue implementation. The queue is populated with
- # _show_block() and _hide_block() calls
- self.queue = deque()
-
- self._initialize()
-
- def _initialize(self):
- """ Initialize the world by placing all the blocks.
- """
- n = 200 # 1/2 width and height of world
- s = 1 # step size
- y =0 # initial y height
- for x in xrange(-n, n + 1, s):
- for z in xrange(-n, n + 1, s):
- # create a layer stone an grass everywhere.
- self.add_block((x, y - 2, z), GRASS, immediate=False)
- self.add_block((x, y - 3, z), STONE, immediate=False)
- self.add_block((x, y - 4, z), STONE, immediate=False)
- if x in (-n, n) or z in (-n, n):
- # create outer walls.
- for dy in xrange(-2, 3):
- self.add_block((x, y + dy, z), STONE, immediate=False)
-
- # generate the hills randomly
- o = n -15
- for _ in xrange(120):
- a = random.randint(-o, o) # x position of the hill
- b = random.randint(-o, o) # z position of the hill
- c = -1 # base of the hill
- h = random.randint(2,6) # height of the hill
- s = random.randint(4,12) # 2 * s is the side length of the hill
- d = 1 # how quickly to taper off the hills
- t = random.choice([GRASS, SAND,STONE])
- for y in xrange(c, c + h):
- for x in xrange(a - s, a + s + 1):
- for z in xrange(b - s, b + s + 1):
- if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
- continue
- if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
- continue
- self.add_block((x, y, z), t, immediate=False)
- s -= d # decrement side lenth so hills taper off
-
- def hit_test(self, position, vector, max_distance=8):
- """ Line of sight search from current position. If a block is
- intersected it is returned, along with the block previously in the line
- of sight. If no block is found, return None, None.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position to check visibility from.
- vector : tuple of len 3
- The line of sight vector.
- max_distance : int
- How many blocks away to search for a hit.
- """
- m = 8
- x, y, z = position
- dx, dy, dz = vector
- previous = None
- for _ in xrange(max_distance * m):
- key = normalize((x, y, z))
- if key != previous and key in self.world:
- return key, previous
- previous = key
- x, y, z = x + dx / m, y + dy / m, z + dz / m
- return None, None
-
- def exposed(self, position):
- """ Returns False is given `position` is surrounded on all 6 sides by
- blocks, True otherwise.
- """
- x, y, z = position
- for dx, dy, dz in FACES:
- if (x + dx, y + dy, z + dz) not in self.world:
- return True
- return False
-
- def add_block(self, position, texture, immediate=True):
- """ Add a block with the given `texture` and `position` to the world.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to add.
- texture : list of len 3
- The coordinates of the texture squares. Use `tex_coords()` to
- generate.
- immediate : bool
- Whether or not to draw the block immediately.
- """
- if position in self.world:
- self.remove_block(position, immediate)
- self.world[position] = texture
- self.sectors.setdefault(sectorize(position), []).append(position)
- if immediate:
- if self.exposed(position):
- self.show_block(position)
- self.check_neighbors(position)
-
- def remove_block(self, position, immediate=True):
- """ Remove the block at the given `position`.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to remove.
- immediate : bool
- Whether or not to immediately remove block from canvas.
- """
- del self.world[position]
- self.sectors[sectorize(position)].remove(position)
- if immediate:
- if position in self.shown:
- self.hide_block(position)
- self.check_neighbors(position)
-
- def check_neighbors(self, position):
- """ Check all blocks surrounding `position` and ensure their visual
- state is current. This means hiding blocks that are not exposed and
- ensuring that all exposed blocks are shown. Usually used after a block
- is added or removed.
- """
- x, y, z = position
- for dx, dy, dz in FACES:
- key = (x + dx, y + dy, z + dz)
- if key not in self.world:
- continue
- if self.exposed(key):
- if key not in self.shown:
- self.show_block(key)
- else:
- if key in self.shown:
- self.hide_block(key)
-
- def show_block(self, position, immediate=True):
- """ Show the block at the given `position`. This method assumes the
- block has already been added with add_block()
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to show.
- immediate : bool
- Whether or not to show the block immediately.
- """
- texture = self.world[position]
- self.shown[position] = texture
- if immediate:
- self._show_block(position, texture)
- else:
- self._enqueue(self._show_block, position, texture)
-
- def _show_block(self, position, texture):
- """ Private implementation of the `show_block()` method.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to show.
- texture : list of len 3
- The coordinates of the texture squares. Use `tex_coords()` to
- generate.
- """
- x, y, z = position
- vertex_data = cube_vertices(x, y, z, 0.5)
- texture_data = list(texture)
- # create vertex list
- # FIXME Maybe `add_indexed()` should be used instead
- self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
- ('v3f/static', vertex_data),
- ('t2f/static', texture_data))
-
- def hide_block(self, position, immediate=True):
- """ Hide the block at the given `position`. Hiding does not remove the
- block from the world.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to hide.
- immediate : bool
- Whether or not to immediately remove the block from the canvas.
- """
- self.shown.pop(position)
- if immediate:
- self._hide_block(position)
- else:
- self._enqueue(self._hide_block, position)
-
- def _hide_block(self, position):
- """ Private implementation of the 'hide_block()` method.
- """
- self._shown.pop(position).delete()
-
- def show_sector(self, sector):
- """ Ensure all blocks in the given sector that should be shown are
- drawn to the canvas.
- """
- for position in self.sectors.get(sector, []):
- if position not in self.shown and self.exposed(position):
- self.show_block(position, False)
-
- def hide_sector(self, sector):
- """ Ensure all blocks in the given sector that should be hidden are
- removed from the canvas.
- """
- for position in self.sectors.get(sector, []):
- if position in self.shown:
- self.hide_block(position, False)
-
- def change_sectors(self, before, after):
- """ Move from sector `before` to sector `after`. A sector is a
- contiguous x, y sub-region of world. Sectors are used to speed up
- world rendering.
- """
- before_set = set()
- after_set = set()
- pad = 4
- for dx in xrange(-pad, pad + 1):
- for dy in [0]: # xrange(-pad, pad + 1):
- for dz in xrange(-pad, pad + 1):
- if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
- continue
- if before:
- x, y, z = before
- before_set.add((x + dx, y + dy, z + dz))
- if after:
- x, y, z = after
- after_set.add((x + dx, y + dy, z + dz))
- show = after_set - before_set
- hide = before_set - after_set
- for sector in show:
- self.show_sector(sector)
- for sector in hide:
- self.hide_sector(sector)
-
- def _enqueue(self, func, *args):
- """ Add `func` to the internal queue.
- """
- self.queue.append((func, args))
-
- def _dequeue(self):
- """ Pop the top function from the internal queue and call it.
- """
- func, args = self.queue.popleft()
- func(*args)
-
- def process_queue(self):
- """ Process the entire queue while taking periodic breaks. This allows
- the game loop to run smoothly. The queue contains calls to
- _show_block() and _hide_block() so this method should be called if
- add_block() or remove_block() was called with immediate=False
- """
- start = time.time
- while self.queue and time.time < 1 / TICKS_PER_SEC:
- self._dequeue()
-
- def process_entire_queue(self):
- """ Process the entire queue with no breaks.
- """
- while self.queue:
- self._dequeue()
'运行
已经接近尾声啦!下面定义一个窗口:
- class Window(pyglet.window.Window):
-
- def __init__(self, *args, **kwargs):
- super(Window, self).__init__(*args, **kwargs)
-
- # Whether or not the window exclusively captures the mouse.
- self.exclusive = False
-
- # When flying gravity has no effect and speed is increased.
- self.flying = False
-
- # Strafing is moving lateral to the direction you are facing,
- # e.g. moving to the left or right while continuing to face forward.
- #
- # First element is -1 when moving forward, 1 when moving back, and 0
- # otherwise. The second element is -1 when moving left, 1 when moving
- # right, and 0 otherwise.
- self.strafe = [0, 0]
-
- # Current (x, y, z) position in the world, specified with floats. Note
- # that, perhaps unlike in math class, the y-axis is the vertical axis.
- self.position = (0, 0, 0)
-
- # First element is rotation of the player in the x-z plane (ground
- # plane) measured from the z-axis down. The second is the rotation
- # angle from the ground plane up. Rotation is in degrees.
- #
- # The vertical plane rotation ranges from -90 (looking straight down) to
- # 90 (looking straight up). The horizontal rotation range is unbounded.
- self.rotation = (0, 0)
-
- # Which sector the player is currently in.
- self.sector = None
-
- # The crosshairs at the center of the screen.
- self.reticle = None
-
- # Velocity in the y (upward) direction.
- self.dy = 0
-
- # A list of blocks the player can place. Hit num keys to cycle.
- self.inventory = [BRICK, GRASS, SAND,STONE,RED,PURPLE,GREEN,BLUE,BLACK,ORANGE]
-
- # The current block the user can place. Hit num keys to cycle.
- self.block = self.inventory[0]
-
- # Convenience list of num keys.
- self.num_keys = [
- key._1, key._2, key._3, key._4, key._5,
- key._6, key._7, key._8, key._9, key._0,key.E,key.R]
-
- # Instance of the model that handles the world.
- self.model = Model()
-
- # The label that is displayed in the top left of the canvas.
- self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
- x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
- color=(0, 0, 0, 255))
-
- # This call schedules the `update()` method to be called
- # TICKS_PER_SEC. This is the main game event loop.
- pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)
-
- def set_exclusive_mouse(self, exclusive):
- """ If `exclusive` is True, the game will capture the mouse, if False
- the game will ignore the mouse.
- """
- super(Window, self).set_exclusive_mouse(exclusive)
- self.exclusive = exclusive
-
- def get_sight_vector(self):
- """ Returns the current line of sight vector indicating the direction
- the player is looking.
- """
- x, y = self.rotation
- # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
- # is 1 when looking ahead parallel to the ground and 0 when looking
- # straight up or down.
- m = math.cos(math.radians(y))
- # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
- # looking straight up.
- dy = math.sin(math.radians(y))
- dx = math.cos(math.radians(x - 90)) * m
- dz = math.sin(math.radians(x - 90)) * m
- return (dx, dy, dz)
-
- def get_motion_vector(self):
- """ Returns the current motion vector indicating the velocity of the
- player.
- Returns
- -------
- vector : tuple of len 3
- Tuple containing the velocity in x, y, and z respectively.
- """
- if any(self.strafe):
- x, y = self.rotation
- strafe = math.degrees(math.atan2(*self.strafe))
- y_angle = math.radians(y)
- x_angle = math.radians(x + strafe)
- if self.flying:
- m = math.cos(y_angle)
- dy = math.sin(y_angle)
- if self.strafe[1]:
- # Moving left or right.
- dy = 0.0
- m = 1
- if self.strafe[0] > 0:
- # Moving backwards.
- dy *= -1
- # When you are flying up or down, you have less left and right
- # motion.
- dx = math.cos(x_angle) * m
- dz = math.sin(x_angle) * m
- else:
- dy = 0.0
- dx = math.cos(x_angle)
- dz = math.sin(x_angle)
- else:
- dy = 0.0
- dx = 0.0
- dz = 0.0
- return (dx, dy, dz)
-
- def update(self, dt):
- """ This method is scheduled to be called repeatedly by the pyglet
- clock.
- Parameters
- ----------
- dt : float
- The change in time since the last call.
- """
- self.model.process_queue()
- sector = sectorize(self.position)
- if sector != self.sector:
- self.model.change_sectors(self.sector, sector)
- if self.sector is None:
- self.model.process_entire_queue()
- self.sector = sector
- m = 8
- dt = min(dt, 0.2)
- for _ in xrange(m):
- self._update(dt / m)
-
- def _update(self, dt):
- """ Private implementation of the `update()` method. This is where most
- of the motion logic lives, along with gravity and collision detection.
- Parameters
- ----------
- dt : float
- The change in time since the last call.
- """
- # walking
- speed = FLYING_SPEED if self.flying else WALKING_SPEED
- d = dt * speed # distance covered this tick.
- dx, dy, dz = self.get_motion_vector()
- # New position in space, before accounting for gravity.
- dx, dy, dz = dx * d, dy * d, dz * d
- # gravity
- if not self.flying:
- # Update your vertical speed: if you are falling, speed up until you
- # hit terminal velocity; if you are jumping, slow down until you
- # start falling.
- self.dy -= dt * GRAVITY
- self.dy = max(self.dy, -TERMINAL_VELOCITY)
- dy += self.dy * dt
- # collisions
- x, y, z = self.position
- x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
- self.position = (x, y, z)
-
- def collide(self, position, height):
- """ Checks to see if the player at the given `position` and `height`
- is colliding with any blocks in the world.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position to check for collisions at.
- height : int or float
- The height of the player.
- Returns
- -------
- position : tuple of len 3
- The new position of the player taking into account collisions.
- """
- # How much overlap with a dimension of a surrounding block you need to
- # have to count as a collision. If 0, touching terrain at all counts as
- # a collision. If .49, you sink into the ground, as if walking through
- # tall grass. If >= .5, you'll fall through the ground.
- pad = 0
- p = list(position)
- np = normalize(position)
- for face in FACES: # check all surrounding blocks
- for i in xrange(3): # check each dimension independently
- if not face[i]:
- continue
- # How much overlap you have with this dimension.
- d = (p[i] - np[i]) * face[i]
- if d < pad:
- continue
- for dy in xrange(height): # check each height
- op = list(np)
- op[1] -= dy
- op[i] += face[i]
- if tuple(op) not in self.model.world:
- continue
- p[i] -= (d - pad) * face[i]
- if face == (0, -1, 0) or face == (0, 1, 0):
- # You are colliding with the ground or ceiling, so stop
- # falling / rising.
- self.dy = 0
- break
- return tuple(p)
-
- def on_mouse_press(self, x, y, button, modifiers):
- """ Called when a mouse button is pressed. See pyglet docs for button
- amd modifier mappings.
- Parameters
- ----------
- x, y : int
- The coordinates of the mouse click. Always center of the screen if
- the mouse is captured.
- button : int
- Number representing mouse button that was clicked. 1 = left button,
- 4 = right button.
- modifiers : int
- Number representing any modifying keys that were pressed when the
- mouse button was clicked.
- """
- if self.exclusive:
- vector = self.get_sight_vector()
- block, previous = self.model.hit_test(self.position, vector)
- if (button == mouse.RIGHT) or \
- ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
- # ON OSX, control + left click = right click.
- if previous:
- self.model.add_block(previous, self.block)
- elif button == pyglet.window.mouse.LEFT and block:
- texture = self.model.world[block]
- self.model.remove_block(block)
- else:
- self.set_exclusive_mouse(True)
-
- def on_mouse_motion(self, x, y, dx, dy):
- """ Called when the player moves the mouse.
- Parameters
- ----------
- x, y : int
- The coordinates of the mouse click. Always center of the screen if
- the mouse is captured.
- dx, dy : float
- The movement of the mouse.
- """
- if self.exclusive:
- m = 0.15
- x, y = self.rotation
- x, y = x + dx * m, y + dy * m
- y = max(-90, min(90, y))
- self.rotation = (x, y)
-
- def on_key_press(self, symbol, modifiers):
- """ Called when the player presses a key. See pyglet docs for key
- mappings.
- Parameters
- ----------
- symbol : int
- Number representing the key that was pressed.
- modifiers : int
- Number representing any modifying keys that were pressed.
- """
- if symbol == key.W:
- self.strafe[0] -= 1
- elif symbol == key.S:
- self.strafe[0] += 1
- elif symbol == key.A:
- self.strafe[1] -= 1
- elif symbol == key.D:
- self.strafe[1] += 1
- elif symbol == key.SPACE:
- if self.dy == 0:
- self.dy = JUMP_SPEED
- elif symbol == key.ESCAPE:
- self.set_exclusive_mouse(False)
- elif symbol == key.TAB:
- self.flying = not self.flying
- elif symbol in self.num_keys:
- index = (symbol - self.num_keys[0]) % len(self.inventory)
- self.block = self.inventory[index]
-
- def on_key_release(self, symbol, modifiers):
- """ Called when the player releases a key. See pyglet docs for key
- mappings.
- Parameters
- ----------
- symbol : int
- Number representing the key that was pressed.
- modifiers : int
- Number representing any modifying keys that were pressed.
- """
- if symbol == key.W:
- self.strafe[0] += 1
- elif symbol == key.S:
- self.strafe[0] -= 1
- elif symbol == key.A:
- self.strafe[1] += 1
- elif symbol == key.D:
- self.strafe[1] -= 1
-
-
- def on_resize(self, width, height):
- """ Called when the window is resized to a new `width` and `height`.
- """
- # label
- self.label.y = height - 10
- # reticle
- if self.reticle:
- self.reticle.delete()
- x, y = self.width // 2, self.height // 2
- n = 10
- self.reticle = pyglet.graphics.vertex_list(4,
- ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
- )
-
- def set_2d(self):
- """ Configure OpenGL to draw in 2d.
- """
- width, height = self.get_size()
- glDisable(GL_DEPTH_TEST)
- viewport = self.get_viewport_size()
- glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def set_3d(self):
- """ Configure OpenGL to draw in 3d.
- """
- width, height = self.get_size()
- glEnable(GL_DEPTH_TEST)
- viewport = self.get_viewport_size()
- glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- gluPerspective(65.0, width / float(height), 0.1, 60.0)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
- x, y = self.rotation
- glRotatef(x, 0, 1, 0)
- glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
- x, y, z = self.position
- glTranslatef(-x, -y, -z)
-
- def on_draw(self):
- """ Called by pyglet to draw the canvas.
- """
- self.clear()
- self.set_3d()
- glColor3d(1, 1, 1)
- self.model.batch.draw()
- self.draw_focused_block()
- self.set_2d()
- self.draw_label()
- self.draw_reticle()
-
- def draw_focused_block(self):
- """ Draw black edges around the block that is currently under the
- crosshairs.
- """
- vector = self.get_sight_vector()
- block = self.model.hit_test(self.position, vector)[0]
- if block:
- x, y, z = block
- vertex_data = cube_vertices(x, y, z, 0.51)
- glColor3d(0, 0, 0)
- glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
- pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
- glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
-
- def draw_label(self):
- """ Draw the label in the top left of the screen.
- """
- x, y, z = self.position
- self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
- pyglet.clock.get_fps(), x, y, z,
- len(self.model._shown), len(self.model.world))
- self.label.draw()
-
- def draw_reticle(self):
- """ Draw the crosshairs in the center of the screen.
- """
- glColor3d(0, 0, 0)
- self.reticle.draw(GL_LINES)
- def setup_fog():
- """ Configure the OpenGL fog properties.
- """
- # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
- # post-texturing color."
- glEnable(GL_FOG)
- # Set the fog color.
- glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 0))
- # Say we have no preference between rendering speed and quality.
- glHint(GL_FOG_HINT, GL_DONT_CARE)
- # Specify the equation used to compute the blending factor.
- glFogi(GL_FOG_MODE, GL_LINEAR)
- # How close and far away fog starts and ends. The closer the start and end,
- # the denser the fog in the fog range.
- glFogf(GL_FOG_START, 20.0)
- glFogf(GL_FOG_END, 60.0)
-
-
- def setup():
- """ Basic OpenGL configuration.
- """
- # Set the color of "clear", i.e. the sky, in rgba.
- glClearColor(0.5, 0.69, 1.0, 1)
- # Enable culling (not rendering) of back-facing facets -- facets that aren't
- # visible to you.
- glEnable(GL_CULL_FACE)
- # Set the texture minification/magnification function to GL_NEAREST (nearest
- # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
- # "is generally faster than GL_LINEAR, but it can produce textured images
- # with sharper edges because the transition between texture elements is not
- # as smooth."
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
- setup_fog()
'运行
- def main():
- window = Window(width=800, height=450, caption='Pyglet', resizable=True)
- # Hide the mouse cursor and prevent the mouse from leaving the window.
- window.set_exclusive_mouse(True)
- setup()
- pyglet.app.run()
-
-
- if __name__ == '__main__':
- main()
- from __future__ import division
-
- import sys
- import math
- import random
- import time
-
- from collections import deque
- from pyglet import image
- from pyglet.gl import *
- from pyglet.graphics import TextureGroup
- from pyglet.window import key, mouse
-
- # 每秒帧数
- TICKS_PER_SEC = 120
-
- # 你可以走的大小
- SECTOR_SIZE =2000
-
- # 行走速度与飞行速度
- WALKING_SPEED = 5.5
- FLYING_SPEED = 15
-
- # 重力与跳跃高度
- GRAVITY = 20
- MAX_JUMP_HEIGHT =1
-
- # About the height of a block.
- # To derive the formula for calculating jump speed, first solve
- # v_t = v_0 + a * t
- # for the time at which you achieve maximum height, where a is the acceleration
- # due to gravity and v_t = 0. This gives:
- # t = - v_0 / a
- # Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
- # s = s_0 + v_0 * t + (a * t^2) / 2
- JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
- TERMINAL_VELOCITY = 50
-
- PLAYER_HEIGHT = 2
-
- if sys.version_info[0] >= 3:
- xrange = range
-
- def cube_vertices(x, y, z, n):
- """ Return the vertices of the cube at position x, y, z with size 2*n.
- """
- return [
- x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
- x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
- x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
- x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
- x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
- x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
- ]
-
-
- def tex_coord(x, y, n=4):
- """
- Return the bounding vertices of the texture square.
- """
- m = 1.0 / n
- dx = x * m
- dy = y * m
- return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
-
-
- def tex_coords(top, bottom, side):
- """
- Return a list of the texture squares for the top, bottom and side.
- """
- top = tex_coord(*top)
- bottom = tex_coord(*bottom)
- side = tex_coord(*side)
- result = []
- result.extend(top)
- result.extend(bottom)
- result.extend(side * 4)
- return result
-
-
- TEXTURE_PATH = 'Minecraft(1)/texture.png'
-
- GRASS = tex_coords((1, 0), (0, 1), (0, 0))
- SAND = tex_coords((1, 1), (1, 1), (1, 1))
- BRICK = tex_coords((2, 0), (2, 0), (2, 0))
- STONE = tex_coords((2, 1), (2, 1), (2, 1))
- PURPLE = tex_coords((3, 1), (3, 1), (3, 1))
- RED = tex_coords((3, 0), (3, 0), (3, 0))
- GREEN = tex_coords((3, 2), (3, 2), (3, 2))
- BLUE = tex_coords((1, 2), (1, 2), (1, 2))
- BLACK = tex_coords((2, 2), (2, 2), (2, 2))
- ORANGE = tex_coords((3, 2), (3, 2), (3, 2))
-
- FACES = [
- ( 0, 1, 0),
- ( 0,-1, 0),
- (-1, 0, 0),
- ( 1, 0, 0),
- ( 0, 0, 1),
- ( 0, 0,-1),
- ]
-
-
- def normalize(position):
- """ Accepts `position` of arbitrary precision and returns the block
- containing that position.
- Parameters
- ----------
- position : tuple of len 3
- Returns
- -------
- block_position : tuple of ints of len 3
- """
- x, y, z = position
- x, y, z = (int(round(x)), int(round(y)), int(round(z)))
- return (x, y, z)
-
-
- def sectorize(position):
- """ Returns a tuple representing the sector for the given `position`.
- Parameters
- ----------
- position : tuple of len 3
- Returns
- -------
- sector : tuple of len 3
- """
- x, y, z = normalize(position)
- x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
- return (x, 0, z)
-
-
- class Model(object):
-
- def __init__(self):
-
- # A Batch is a collection of vertex lists for batched rendering.
- self.batch = pyglet.graphics.Batch()
-
- # A TextureGroup manages an OpenGL texture.
- self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())
-
- # A mapping from position to the texture of the block at that position.
- # This defines all the blocks that are currently in the world.
- self.world = {}
-
- # Same mapping as `world` but only contains blocks that are shown.
- self.shown = {}
-
- # Mapping from position to a pyglet `VertextList` for all shown blocks.
- self._shown = {}
-
- # Mapping from sector to a list of positions inside that sector.
- self.sectors = {}
-
- # Simple function queue implementation. The queue is populated with
- # _show_block() and _hide_block() calls
- self.queue = deque()
-
- self._initialize()
-
- def _initialize(self):
- """ Initialize the world by placing all the blocks.
- """
- n = 200 # 1/2 width and height of world
- s = 1 # step size
- y =0 # initial y height
- for x in xrange(-n, n + 1, s):
- for z in xrange(-n, n + 1, s):
- # create a layer stone an grass everywhere.
- self.add_block((x, y - 2, z), GRASS, immediate=False)
- self.add_block((x, y - 3, z), STONE, immediate=False)
- self.add_block((x, y - 4, z), STONE, immediate=False)
- if x in (-n, n) or z in (-n, n):
- # create outer walls.
- for dy in xrange(-2, 3):
- self.add_block((x, y + dy, z), STONE, immediate=False)
-
- # generate the hills randomly
- o = n -15
- for _ in xrange(120):
- a = random.randint(-o, o) # x position of the hill
- b = random.randint(-o, o) # z position of the hill
- c = -1 # base of the hill
- h = random.randint(2,6) # height of the hill
- s = random.randint(4,12) # 2 * s is the side length of the hill
- d = 1 # how quickly to taper off the hills
- t = random.choice([GRASS, SAND,STONE])
- for y in xrange(c, c + h):
- for x in xrange(a - s, a + s + 1):
- for z in xrange(b - s, b + s + 1):
- if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
- continue
- if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
- continue
- self.add_block((x, y, z), t, immediate=False)
- s -= d # decrement side lenth so hills taper off
-
- def hit_test(self, position, vector, max_distance=8):
- """ Line of sight search from current position. If a block is
- intersected it is returned, along with the block previously in the line
- of sight. If no block is found, return None, None.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position to check visibility from.
- vector : tuple of len 3
- The line of sight vector.
- max_distance : int
- How many blocks away to search for a hit.
- """
- m = 8
- x, y, z = position
- dx, dy, dz = vector
- previous = None
- for _ in xrange(max_distance * m):
- key = normalize((x, y, z))
- if key != previous and key in self.world:
- return key, previous
- previous = key
- x, y, z = x + dx / m, y + dy / m, z + dz / m
- return None, None
-
- def exposed(self, position):
- """ Returns False is given `position` is surrounded on all 6 sides by
- blocks, True otherwise.
- """
- x, y, z = position
- for dx, dy, dz in FACES:
- if (x + dx, y + dy, z + dz) not in self.world:
- return True
- return False
-
- def add_block(self, position, texture, immediate=True):
- """ Add a block with the given `texture` and `position` to the world.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to add.
- texture : list of len 3
- The coordinates of the texture squares. Use `tex_coords()` to
- generate.
- immediate : bool
- Whether or not to draw the block immediately.
- """
- if position in self.world:
- self.remove_block(position, immediate)
- self.world[position] = texture
- self.sectors.setdefault(sectorize(position), []).append(position)
- if immediate:
- if self.exposed(position):
- self.show_block(position)
- self.check_neighbors(position)
-
- def remove_block(self, position, immediate=True):
- """ Remove the block at the given `position`.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to remove.
- immediate : bool
- Whether or not to immediately remove block from canvas.
- """
- del self.world[position]
- self.sectors[sectorize(position)].remove(position)
- if immediate:
- if position in self.shown:
- self.hide_block(position)
- self.check_neighbors(position)
-
- def check_neighbors(self, position):
- """ Check all blocks surrounding `position` and ensure their visual
- state is current. This means hiding blocks that are not exposed and
- ensuring that all exposed blocks are shown. Usually used after a block
- is added or removed.
- """
- x, y, z = position
- for dx, dy, dz in FACES:
- key = (x + dx, y + dy, z + dz)
- if key not in self.world:
- continue
- if self.exposed(key):
- if key not in self.shown:
- self.show_block(key)
- else:
- if key in self.shown:
- self.hide_block(key)
-
- def show_block(self, position, immediate=True):
- """ Show the block at the given `position`. This method assumes the
- block has already been added with add_block()
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to show.
- immediate : bool
- Whether or not to show the block immediately.
- """
- texture = self.world[position]
- self.shown[position] = texture
- if immediate:
- self._show_block(position, texture)
- else:
- self._enqueue(self._show_block, position, texture)
-
- def _show_block(self, position, texture):
- """ Private implementation of the `show_block()` method.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to show.
- texture : list of len 3
- The coordinates of the texture squares. Use `tex_coords()` to
- generate.
- """
- x, y, z = position
- vertex_data = cube_vertices(x, y, z, 0.5)
- texture_data = list(texture)
- # create vertex list
- # FIXME Maybe `add_indexed()` should be used instead
- self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
- ('v3f/static', vertex_data),
- ('t2f/static', texture_data))
-
- def hide_block(self, position, immediate=True):
- """ Hide the block at the given `position`. Hiding does not remove the
- block from the world.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position of the block to hide.
- immediate : bool
- Whether or not to immediately remove the block from the canvas.
- """
- self.shown.pop(position)
- if immediate:
- self._hide_block(position)
- else:
- self._enqueue(self._hide_block, position)
-
- def _hide_block(self, position):
- """ Private implementation of the 'hide_block()` method.
- """
- self._shown.pop(position).delete()
-
- def show_sector(self, sector):
- """ Ensure all blocks in the given sector that should be shown are
- drawn to the canvas.
- """
- for position in self.sectors.get(sector, []):
- if position not in self.shown and self.exposed(position):
- self.show_block(position, False)
-
- def hide_sector(self, sector):
- """ Ensure all blocks in the given sector that should be hidden are
- removed from the canvas.
- """
- for position in self.sectors.get(sector, []):
- if position in self.shown:
- self.hide_block(position, False)
-
- def change_sectors(self, before, after):
- """ Move from sector `before` to sector `after`. A sector is a
- contiguous x, y sub-region of world. Sectors are used to speed up
- world rendering.
- """
- before_set = set()
- after_set = set()
- pad = 4
- for dx in xrange(-pad, pad + 1):
- for dy in [0]: # xrange(-pad, pad + 1):
- for dz in xrange(-pad, pad + 1):
- if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
- continue
- if before:
- x, y, z = before
- before_set.add((x + dx, y + dy, z + dz))
- if after:
- x, y, z = after
- after_set.add((x + dx, y + dy, z + dz))
- show = after_set - before_set
- hide = before_set - after_set
- for sector in show:
- self.show_sector(sector)
- for sector in hide:
- self.hide_sector(sector)
-
- def _enqueue(self, func, *args):
- """ Add `func` to the internal queue.
- """
- self.queue.append((func, args))
-
- def _dequeue(self):
- """ Pop the top function from the internal queue and call it.
- """
- func, args = self.queue.popleft()
- func(*args)
-
- def process_queue(self):
- """ Process the entire queue while taking periodic breaks. This allows
- the game loop to run smoothly. The queue contains calls to
- _show_block() and _hide_block() so this method should be called if
- add_block() or remove_block() was called with immediate=False
- """
- start = time.time
- while self.queue and time.time < 1 / TICKS_PER_SEC:
- self._dequeue()
-
- def process_entire_queue(self):
- """ Process the entire queue with no breaks.
- """
- while self.queue:
- self._dequeue()
-
-
- class Window(pyglet.window.Window):
-
- def __init__(self, *args, **kwargs):
- super(Window, self).__init__(*args, **kwargs)
-
- # Whether or not the window exclusively captures the mouse.
- self.exclusive = False
-
- # When flying gravity has no effect and speed is increased.
- self.flying = False
-
- # Strafing is moving lateral to the direction you are facing,
- # e.g. moving to the left or right while continuing to face forward.
- #
- # First element is -1 when moving forward, 1 when moving back, and 0
- # otherwise. The second element is -1 when moving left, 1 when moving
- # right, and 0 otherwise.
- self.strafe = [0, 0]
-
- # Current (x, y, z) position in the world, specified with floats. Note
- # that, perhaps unlike in math class, the y-axis is the vertical axis.
- self.position = (0, 0, 0)
-
- # First element is rotation of the player in the x-z plane (ground
- # plane) measured from the z-axis down. The second is the rotation
- # angle from the ground plane up. Rotation is in degrees.
- #
- # The vertical plane rotation ranges from -90 (looking straight down) to
- # 90 (looking straight up). The horizontal rotation range is unbounded.
- self.rotation = (0, 0)
-
- # Which sector the player is currently in.
- self.sector = None
-
- # The crosshairs at the center of the screen.
- self.reticle = None
-
- # Velocity in the y (upward) direction.
- self.dy = 0
-
- # A list of blocks the player can place. Hit num keys to cycle.
- self.inventory = [BRICK, GRASS, SAND,STONE,RED,PURPLE,GREEN,BLUE,BLACK,ORANGE]
-
- # The current block the user can place. Hit num keys to cycle.
- self.block = self.inventory[0]
-
- # Convenience list of num keys.
- self.num_keys = [
- key._1, key._2, key._3, key._4, key._5,
- key._6, key._7, key._8, key._9, key._0,key.E,key.R]
-
- # Instance of the model that handles the world.
- self.model = Model()
-
- # The label that is displayed in the top left of the canvas.
- self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
- x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
- color=(0, 0, 0, 255))
-
- # This call schedules the `update()` method to be called
- # TICKS_PER_SEC. This is the main game event loop.
- pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)
-
- def set_exclusive_mouse(self, exclusive):
- """ If `exclusive` is True, the game will capture the mouse, if False
- the game will ignore the mouse.
- """
- super(Window, self).set_exclusive_mouse(exclusive)
- self.exclusive = exclusive
-
- def get_sight_vector(self):
- """ Returns the current line of sight vector indicating the direction
- the player is looking.
- """
- x, y = self.rotation
- # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
- # is 1 when looking ahead parallel to the ground and 0 when looking
- # straight up or down.
- m = math.cos(math.radians(y))
- # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
- # looking straight up.
- dy = math.sin(math.radians(y))
- dx = math.cos(math.radians(x - 90)) * m
- dz = math.sin(math.radians(x - 90)) * m
- return (dx, dy, dz)
-
- def get_motion_vector(self):
- """ Returns the current motion vector indicating the velocity of the
- player.
- Returns
- -------
- vector : tuple of len 3
- Tuple containing the velocity in x, y, and z respectively.
- """
- if any(self.strafe):
- x, y = self.rotation
- strafe = math.degrees(math.atan2(*self.strafe))
- y_angle = math.radians(y)
- x_angle = math.radians(x + strafe)
- if self.flying:
- m = math.cos(y_angle)
- dy = math.sin(y_angle)
- if self.strafe[1]:
- # Moving left or right.
- dy = 0.0
- m = 1
- if self.strafe[0] > 0:
- # Moving backwards.
- dy *= -1
- # When you are flying up or down, you have less left and right
- # motion.
- dx = math.cos(x_angle) * m
- dz = math.sin(x_angle) * m
- else:
- dy = 0.0
- dx = math.cos(x_angle)
- dz = math.sin(x_angle)
- else:
- dy = 0.0
- dx = 0.0
- dz = 0.0
- return (dx, dy, dz)
-
- def update(self, dt):
- """ This method is scheduled to be called repeatedly by the pyglet
- clock.
- Parameters
- ----------
- dt : float
- The change in time since the last call.
- """
- self.model.process_queue()
- sector = sectorize(self.position)
- if sector != self.sector:
- self.model.change_sectors(self.sector, sector)
- if self.sector is None:
- self.model.process_entire_queue()
- self.sector = sector
- m = 8
- dt = min(dt, 0.2)
- for _ in xrange(m):
- self._update(dt / m)
-
- def _update(self, dt):
- """ Private implementation of the `update()` method. This is where most
- of the motion logic lives, along with gravity and collision detection.
- Parameters
- ----------
- dt : float
- The change in time since the last call.
- """
- # walking
- speed = FLYING_SPEED if self.flying else WALKING_SPEED
- d = dt * speed # distance covered this tick.
- dx, dy, dz = self.get_motion_vector()
- # New position in space, before accounting for gravity.
- dx, dy, dz = dx * d, dy * d, dz * d
- # gravity
- if not self.flying:
- # Update your vertical speed: if you are falling, speed up until you
- # hit terminal velocity; if you are jumping, slow down until you
- # start falling.
- self.dy -= dt * GRAVITY
- self.dy = max(self.dy, -TERMINAL_VELOCITY)
- dy += self.dy * dt
- # collisions
- x, y, z = self.position
- x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
- self.position = (x, y, z)
-
- def collide(self, position, height):
- """ Checks to see if the player at the given `position` and `height`
- is colliding with any blocks in the world.
- Parameters
- ----------
- position : tuple of len 3
- The (x, y, z) position to check for collisions at.
- height : int or float
- The height of the player.
- Returns
- -------
- position : tuple of len 3
- The new position of the player taking into account collisions.
- """
- # How much overlap with a dimension of a surrounding block you need to
- # have to count as a collision. If 0, touching terrain at all counts as
- # a collision. If .49, you sink into the ground, as if walking through
- # tall grass. If >= .5, you'll fall through the ground.
- pad = 0
- p = list(position)
- np = normalize(position)
- for face in FACES: # check all surrounding blocks
- for i in xrange(3): # check each dimension independently
- if not face[i]:
- continue
- # How much overlap you have with this dimension.
- d = (p[i] - np[i]) * face[i]
- if d < pad:
- continue
- for dy in xrange(height): # check each height
- op = list(np)
- op[1] -= dy
- op[i] += face[i]
- if tuple(op) not in self.model.world:
- continue
- p[i] -= (d - pad) * face[i]
- if face == (0, -1, 0) or face == (0, 1, 0):
- # You are colliding with the ground or ceiling, so stop
- # falling / rising.
- self.dy = 0
- break
- return tuple(p)
-
- def on_mouse_press(self, x, y, button, modifiers):
- """ Called when a mouse button is pressed. See pyglet docs for button
- amd modifier mappings.
- Parameters
- ----------
- x, y : int
- The coordinates of the mouse click. Always center of the screen if
- the mouse is captured.
- button : int
- Number representing mouse button that was clicked. 1 = left button,
- 4 = right button.
- modifiers : int
- Number representing any modifying keys that were pressed when the
- mouse button was clicked.
- """
- if self.exclusive:
- vector = self.get_sight_vector()
- block, previous = self.model.hit_test(self.position, vector)
- if (button == mouse.RIGHT) or \
- ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
- # ON OSX, control + left click = right click.
- if previous:
- self.model.add_block(previous, self.block)
- elif button == pyglet.window.mouse.LEFT and block:
- texture = self.model.world[block]
- self.model.remove_block(block)
- else:
- self.set_exclusive_mouse(True)
-
- def on_mouse_motion(self, x, y, dx, dy):
- """ Called when the player moves the mouse.
- Parameters
- ----------
- x, y : int
- The coordinates of the mouse click. Always center of the screen if
- the mouse is captured.
- dx, dy : float
- The movement of the mouse.
- """
- if self.exclusive:
- m = 0.15
- x, y = self.rotation
- x, y = x + dx * m, y + dy * m
- y = max(-90, min(90, y))
- self.rotation = (x, y)
-
- def on_key_press(self, symbol, modifiers):
- """ Called when the player presses a key. See pyglet docs for key
- mappings.
- Parameters
- ----------
- symbol : int
- Number representing the key that was pressed.
- modifiers : int
- Number representing any modifying keys that were pressed.
- """
- if symbol == key.W:
- self.strafe[0] -= 1
- elif symbol == key.S:
- self.strafe[0] += 1
- elif symbol == key.A:
- self.strafe[1] -= 1
- elif symbol == key.D:
- self.strafe[1] += 1
- elif symbol == key.SPACE:
- if self.dy == 0:
- self.dy = JUMP_SPEED
- elif symbol == key.ESCAPE:
- self.set_exclusive_mouse(False)
- elif symbol == key.TAB:
- self.flying = not self.flying
- elif symbol in self.num_keys:
- index = (symbol - self.num_keys[0]) % len(self.inventory)
- self.block = self.inventory[index]
-
- def on_key_release(self, symbol, modifiers):
- """ Called when the player releases a key. See pyglet docs for key
- mappings.
- Parameters
- ----------
- symbol : int
- Number representing the key that was pressed.
- modifiers : int
- Number representing any modifying keys that were pressed.
- """
- if symbol == key.W:
- self.strafe[0] += 1
- elif symbol == key.S:
- self.strafe[0] -= 1
- elif symbol == key.A:
- self.strafe[1] += 1
- elif symbol == key.D:
- self.strafe[1] -= 1
-
-
- def on_resize(self, width, height):
- """ Called when the window is resized to a new `width` and `height`.
- """
- # label
- self.label.y = height - 10
- # reticle
- if self.reticle:
- self.reticle.delete()
- x, y = self.width // 2, self.height // 2
- n = 10
- self.reticle = pyglet.graphics.vertex_list(4,
- ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
- )
-
- def set_2d(self):
- """ Configure OpenGL to draw in 2d.
- """
- width, height = self.get_size()
- glDisable(GL_DEPTH_TEST)
- viewport = self.get_viewport_size()
- glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def set_3d(self):
- """ Configure OpenGL to draw in 3d.
- """
- width, height = self.get_size()
- glEnable(GL_DEPTH_TEST)
- viewport = self.get_viewport_size()
- glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- gluPerspective(65.0, width / float(height), 0.1, 60.0)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
- x, y = self.rotation
- glRotatef(x, 0, 1, 0)
- glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
- x, y, z = self.position
- glTranslatef(-x, -y, -z)
-
- def on_draw(self):
- """ Called by pyglet to draw the canvas.
- """
- self.clear()
- self.set_3d()
- glColor3d(1, 1, 1)
- self.model.batch.draw()
- self.draw_focused_block()
- self.set_2d()
- self.draw_label()
- self.draw_reticle()
-
- def draw_focused_block(self):
- """ Draw black edges around the block that is currently under the
- crosshairs.
- """
- vector = self.get_sight_vector()
- block = self.model.hit_test(self.position, vector)[0]
- if block:
- x, y, z = block
- vertex_data = cube_vertices(x, y, z, 0.51)
- glColor3d(0, 0, 0)
- glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
- pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
- glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
-
- def draw_label(self):
- """ Draw the label in the top left of the screen.
- """
- x, y, z = self.position
- self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
- pyglet.clock.get_fps(), x, y, z,
- len(self.model._shown), len(self.model.world))
- self.label.draw()
-
- def draw_reticle(self):
- """ Draw the crosshairs in the center of the screen.
- """
- glColor3d(0, 0, 0)
- self.reticle.draw(GL_LINES)
-
-
- def setup_fog():
- """ Configure the OpenGL fog properties.
- """
- # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
- # post-texturing color."
- glEnable(GL_FOG)
- # Set the fog color.
- glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 0))
- # Say we have no preference between rendering speed and quality.
- glHint(GL_FOG_HINT, GL_DONT_CARE)
- # Specify the equation used to compute the blending factor.
- glFogi(GL_FOG_MODE, GL_LINEAR)
- # How close and far away fog starts and ends. The closer the start and end,
- # the denser the fog in the fog range.
- glFogf(GL_FOG_START, 20.0)
- glFogf(GL_FOG_END, 60.0)
-
-
- def setup():
- """ Basic OpenGL configuration.
- """
- # Set the color of "clear", i.e. the sky, in rgba.
- glClearColor(0.5, 0.69, 1.0, 1)
- # Enable culling (not rendering) of back-facing facets -- facets that aren't
- # visible to you.
- glEnable(GL_CULL_FACE)
- # Set the texture minification/magnification function to GL_NEAREST (nearest
- # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
- # "is generally faster than GL_LINEAR, but it can produce textured images
- # with sharper edges because the transition between texture elements is not
- # as smooth."
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
- setup_fog()
-
-
- def main():
- window = Window(width=800, height=450, caption='Pyglet', resizable=True)
- # Hide the mouse cursor and prevent the mouse from leaving the window.
- window.set_exclusive_mouse(True)
- setup()
- pyglet.app.run()
-
-
- if __name__ == '__main__':
- main()
作者:Unbeatable-NGU from NortH
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。