赞
踩
给定的连通无向图G=(V,E),必可选取某V-1条边与原本的V个点构成一个无环路的连通子图G1=(V,V-1),G1就是G的生成树.这V-1条边的权值和就是这个生成树的权重,权重最小的就是最小权重生成树
普利姆算法:维护一个集合,每次将离集合最近的点加入到集合
使用邻接矩阵存储即可
克鲁斯卡尔算法:给每一条边按照权值进行排序,然后遍历m个点
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
AC思想
prim 算法干的事情是:给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。
dis[N]存储各个节点到生成树的距离,g[i][j]存储的边权,每一次查看走那一条边权可以使得到达集合的距离最短
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510;
int g[N][N];//存储图
int dt[N];//存储各个节点到生成树的距离
int st[N];//节点是否被加入到生成树中
int pre[N];//节点的前去节点
int n, m;//n 个节点,m 条边
void prim(){
memset(dt,0x3f, sizeof(dt));//初始化距离数组为一个很大的数(10亿左右)
int res= 0;
dt[1] = 0;//从 1 号节点开始生成
for(int i = 0; i < n; i++)//每次循环选出一个点加入到生成树
{
int t = -1;
for(int j = 1; j <= n; j++)//每个节点一次判断
{
if(!st[j] && (t == -1 || dt[j] < dt[t]))//如果没有在树中,且到树的距离最短,则选择该点
t = j;
}
st[t] = 1;// 选择该点
res += dt[t];
for(int i = 1; i <= n; i++)//更新生成树外的点到生成树的距离
{
if(dt[i] > g[t][i] && !st[i])//从 t 到节点 i 的距离小于原来距离,则更新。
{
dt[i] = g[t][i];//更新距离
pre[i] = t;//从 t 到 i 的距离更短,i 的前驱变为 t.
}
}
}
}
void getPath(){//输出各个边
for(int i = n; i > 1; i--)//n 个节点,所以有 n-1 条边。
{
cout << i <<" " << pre[i] << " "<< endl;// i 是节点编号,pre[i] 是 i 节点的前驱节点。他们构成一条边。
}
int main(){
memset(g, 0x3f, sizeof(g));//各个点之间的距离初始化成很大的数
cin >> n >> m;//输入节点数和边数
while(m --){
int a, b, w;
cin >> a >> b >> w;//输出边的两个顶点和权重
g[a][b] = g[b][a] = min(g[a][b],w);//存储权重
}
prim();//求最下生成树
//getPath();//输出路径
return 0;
}
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int prim(){
memset(dist, 0x3f, sizeof dist);
int res = 0;//存储答案
for (int i = 0; i < n; i ++ )//n轮循环找每一个点
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF; //不连通
if (i) res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);//用最小值更新每一条边
}
return res;
}
int main(){
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while (m -- ){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = g[b][a] = min(g[a][b], c);
}
int t = prim();
if (t == INF) puts("impossible");
else printf("%d\n", t);
return 0;
}
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
AC思想
使用结构体进行存储,对边的权值进行从小到大进行排序
AC代码
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010, INF = 0x3f3f3f3f;
int n, m;
int p[N];
struct node{
int a, b, w;
}edges[M];
bool cmp(node a,node b){
return a.w < b.w;
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int kruskal(){
sort(edges, edges + m, cmp);
for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ ){//m条边
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b){//连接两个点
p[a] = b;
res += w;//统计最小生成树大小
cnt ++ ;//统计边数
}
}
if (cnt < n - 1) return INF;//边数小于n-1则不连通
return res;
}
int main(){
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++ ){
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
edges[i] = {a, b, w};
}
int t = kruskal();
if (t == INF) puts("impossible");
else printf("%d\n", t);
return 0;
}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。