赞
踩
昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。
昇思MindSpore总体架构如下图所示:
在MindSpore中,静态图模式又被称为Graph模式,可以通过set_context(mode=GRAPH_MODE)
来设置成静态图模式
在MindSpore中,动态图模式又被称为PyNative模式,可以通过set_context(mode=PYNATIVE_MODE)
来设置成动态图模式。
MindIR提供端云统一的IR格式,通过统一IR定义了网络的逻辑结构和算子的属性,将MindIR格式的模型文件 与硬件平台解耦,实现一次训练多次部署
- #!/usr/bin/env python
- # coding: utf-8
-
- import mindspore
- from mindspore import nn
- from mindspore.dataset import vision, transforms
- from mindspore.dataset import MnistDataset
-
-
- # Download data from open datasets
- from download import download
-
- url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
- "notebook/datasets/MNIST_Data.zip"
- path = download(url, "./", kind="zip", replace=True)
-
-
- train_dataset = MnistDataset('MNIST_Data/train')
- test_dataset = MnistDataset('MNIST_Data/test')
-
-
- print(train_dataset.get_col_names())
-
- def datapipe(dataset, batch_size):
- image_transforms = [
- vision.Rescale(1.0 / 255.0, 0),
- vision.Normalize(mean=(0.1307,), std=(0.3081,)),
- vision.HWC2CHW()
- ]
- label_transform = transforms.TypeCast(mindspore.int32)
-
- dataset = dataset.map(image_transforms, 'image')
- dataset = dataset.map(label_transform, 'label')
- dataset = dataset.batch(batch_size)
- return dataset
-
-
- # Map vision transforms and batch dataset
- train_dataset = datapipe(train_dataset, 64)
- test_dataset = datapipe(test_dataset, 64)
-
-
- for image, label in test_dataset.create_tuple_iterator():
- print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
- print(f"Shape of label: {label.shape} {label.dtype}")
- break
-
-
- for data in test_dataset.create_dict_iterator():
- print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
- print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
- break
-
-
- # Define model
- class Network(nn.Cell):
- def __init__(self):
- super().__init__()
- self.flatten = nn.Flatten()
- self.dense_relu_sequential = nn.SequentialCell(
- nn.Dense(28*28, 512),
- nn.ReLU(),
- nn.Dense(512, 512),
- nn.ReLU(),
- nn.Dense(512, 10)
- )
-
- def construct(self, x):
- x = self.flatten(x)
- logits = self.dense_relu_sequential(x)
- return logits
-
- model = Network()
- print(model)
-
-
- # Instantiate loss function and optimizer
- loss_fn = nn.CrossEntropyLoss()
- optimizer = nn.SGD(model.trainable_params(), 1e-2)
-
- # 1. Define forward function
- def forward_fn(data, label):
- logits = model(data)
- loss = loss_fn(logits, label)
- return loss, logits
-
- # 2. Get gradient function
- grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
-
- # 3. Define function of one-step training
- def train_step(data, label):
- (loss, _), grads = grad_fn(data, label)
- optimizer(grads)
- return loss
-
- def train(model, dataset):
- size = dataset.get_dataset_size()
- model.set_train()
- for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
- loss = train_step(data, label)
-
- if batch % 100 == 0:
- loss, current = loss.asnumpy(), batch
- print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
-
-
- def test(model, dataset, loss_fn):
- num_batches = dataset.get_dataset_size()
- model.set_train(False)
- total, test_loss, correct = 0, 0, 0
- for data, label in dataset.create_tuple_iterator():
- pred = model(data)
- total += len(data)
- test_loss += loss_fn(pred, label).asnumpy()
- correct += (pred.argmax(1) == label).asnumpy().sum()
- test_loss /= num_batches
- correct /= total
- print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
-
- epochs = 3
- for t in range(epochs):
- print(f"Epoch {t+1}\n-------------------------------")
- train(model, train_dataset)
- test(model, test_dataset, loss_fn)
- print("Done!")
-
- # Save checkpoint
- mindspore.save_checkpoint(model, "model.ckpt")
- print("Saved Model to model.ckpt")
-
-
- # Instantiate a random initialized model
- model = Network()
- # Load checkpoint and load parameter to model
- param_dict = mindspore.load_checkpoint("model.ckpt")
- param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
- print(param_not_load)
-
-
- model.set_train(False)
- for data, label in test_dataset:
- pred = model(data)
- predicted = pred.argmax(1)
- print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
- break

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。