当前位置:   article > 正文

华为昇思MindSpore-基本介绍与快速入门_华为的mindspore猫狗开发设计主要内容

华为的mindspore猫狗开发设计主要内容

基本介绍

1.昇思MindSpore介绍

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。

昇思MindSpore总体架构如下图所示:

2.执行流程

3.动静态图结合

在MindSpore中,静态图模式又被称为Graph模式,可以通过set_context(mode=GRAPH_MODE)来设置成静态图模式

在MindSpore中,动态图模式又被称为PyNative模式,可以通过set_context(mode=PYNATIVE_MODE)来设置成动态图模式。

4.中间表示MindIR

MindIR提供端云统一的IR格式,通过统一IR定义了网络的逻辑结构和算子的属性,将MindIR格式的模型文件 与硬件平台解耦,实现一次训练多次部署

快速入门

  1. #!/usr/bin/env python
  2. # coding: utf-8
  3. import mindspore
  4. from mindspore import nn
  5. from mindspore.dataset import vision, transforms
  6. from mindspore.dataset import MnistDataset
  7. # Download data from open datasets
  8. from download import download
  9. url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
  10. "notebook/datasets/MNIST_Data.zip"
  11. path = download(url, "./", kind="zip", replace=True)
  12. train_dataset = MnistDataset('MNIST_Data/train')
  13. test_dataset = MnistDataset('MNIST_Data/test')
  14. print(train_dataset.get_col_names())
  15. def datapipe(dataset, batch_size):
  16. image_transforms = [
  17. vision.Rescale(1.0 / 255.0, 0),
  18. vision.Normalize(mean=(0.1307,), std=(0.3081,)),
  19. vision.HWC2CHW()
  20. ]
  21. label_transform = transforms.TypeCast(mindspore.int32)
  22. dataset = dataset.map(image_transforms, 'image')
  23. dataset = dataset.map(label_transform, 'label')
  24. dataset = dataset.batch(batch_size)
  25. return dataset
  26. # Map vision transforms and batch dataset
  27. train_dataset = datapipe(train_dataset, 64)
  28. test_dataset = datapipe(test_dataset, 64)
  29. for image, label in test_dataset.create_tuple_iterator():
  30. print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
  31. print(f"Shape of label: {label.shape} {label.dtype}")
  32. break
  33. for data in test_dataset.create_dict_iterator():
  34. print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
  35. print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
  36. break
  37. # Define model
  38. class Network(nn.Cell):
  39. def __init__(self):
  40. super().__init__()
  41. self.flatten = nn.Flatten()
  42. self.dense_relu_sequential = nn.SequentialCell(
  43. nn.Dense(28*28, 512),
  44. nn.ReLU(),
  45. nn.Dense(512, 512),
  46. nn.ReLU(),
  47. nn.Dense(512, 10)
  48. )
  49. def construct(self, x):
  50. x = self.flatten(x)
  51. logits = self.dense_relu_sequential(x)
  52. return logits
  53. model = Network()
  54. print(model)
  55. # Instantiate loss function and optimizer
  56. loss_fn = nn.CrossEntropyLoss()
  57. optimizer = nn.SGD(model.trainable_params(), 1e-2)
  58. # 1. Define forward function
  59. def forward_fn(data, label):
  60. logits = model(data)
  61. loss = loss_fn(logits, label)
  62. return loss, logits
  63. # 2. Get gradient function
  64. grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
  65. # 3. Define function of one-step training
  66. def train_step(data, label):
  67. (loss, _), grads = grad_fn(data, label)
  68. optimizer(grads)
  69. return loss
  70. def train(model, dataset):
  71. size = dataset.get_dataset_size()
  72. model.set_train()
  73. for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
  74. loss = train_step(data, label)
  75. if batch % 100 == 0:
  76. loss, current = loss.asnumpy(), batch
  77. print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
  78. def test(model, dataset, loss_fn):
  79. num_batches = dataset.get_dataset_size()
  80. model.set_train(False)
  81. total, test_loss, correct = 0, 0, 0
  82. for data, label in dataset.create_tuple_iterator():
  83. pred = model(data)
  84. total += len(data)
  85. test_loss += loss_fn(pred, label).asnumpy()
  86. correct += (pred.argmax(1) == label).asnumpy().sum()
  87. test_loss /= num_batches
  88. correct /= total
  89. print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
  90. epochs = 3
  91. for t in range(epochs):
  92. print(f"Epoch {t+1}\n-------------------------------")
  93. train(model, train_dataset)
  94. test(model, test_dataset, loss_fn)
  95. print("Done!")
  96. # Save checkpoint
  97. mindspore.save_checkpoint(model, "model.ckpt")
  98. print("Saved Model to model.ckpt")
  99. # Instantiate a random initialized model
  100. model = Network()
  101. # Load checkpoint and load parameter to model
  102. param_dict = mindspore.load_checkpoint("model.ckpt")
  103. param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
  104. print(param_not_load)
  105. model.set_train(False)
  106. for data, label in test_dataset:
  107. pred = model(data)
  108. predicted = pred.argmax(1)
  109. print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
  110. break

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/843467
推荐阅读
相关标签
  

闽ICP备14008679号