难点2:多语言实体链接,在实际应用中,我们经常需要把多语言的文本中的实体链接到一个或多个不同语种的知识图谱上这类型的设定被称为是跨语言实体链接当语种数目足够多时,会出现低资源语种或实体对应的训练数据极少的情况,因此,需要格外关注零样本和少样本的情形。《Entity Linking in 100 Languages》
从知识图谱中抽取相关的事实三元组,并将其作为提示信息输入到大模型。因此在这一方法中,如何抽取最相关的三元组是需要解决的主要问题。所提方法分为三个模块:知识获取-知识表达-知识注入。知识获取的目标从给定问题中抽取相关的实体。本模块采用的方法为传统的实体链接方法。然而,该实体相关三元组可能规模较大,且并非所有都与问题相关。基于这一考虑,本文首先采用已有的句子表示模型,分别将三元组和问题映射到统一表示空间,选择前K个与问题语义最相似的三元组。知识表达的目标是将三元组转化为文本形式的表示。知识注入的目标是根据三元组和给定问题构建大模型提示词。构建方法为首先列出N个相关三元组,然后增加说明信息“Below are facts in the form of the triple meaningful to answer the question”。